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1 Demonstrative Video

Kindly find the demonstrative video of our solution to the problem statement, the proposed
business rule engine here.

2 Introduction

In the dynamic and ever-evolving airline industry, flight cancellations and schedule changes
are a common occurrence. These changes can be driven by multiple factors such as seasonal
demands, bad weather, introduction of new routes, adjustments for daylight savings, etc. Such
alterations, while necessary for operational efficiency, invariably affect passengers, necessitating
a robust system to manage and mitigate the impact.

This report focuses on developing and implementing an advanced and robust hybrid
Classical-Quantum Solution for efficient re-accommodation of impacted passengers due to
flight cancellations.

3 Background Literature review

The problem is effectively the famous Passenger Recovery Problem (PRP) [1], which
addresses the recovery of passenger itineraries in the light of canceled/delayed flights. The
problem has been studied as a classical optimization problem before, formulating the problem
as a mixed-integer programming model [2].

On the quantum side, we analyzed the approaches used to solve various optimization prob-
lems inspired by the Mphasis Crew Rostering [3].

Running airline operations smoothly and cost-effectively on such a massive scale requires
intricate planning and scheduling. Therefore, airline companies often use optimization tools to
achieve this end in passenger re-accommodation. Specifically, the passenger recovery problem
is a computationally intensive problem with large datasets and numerous complex constraints.

4 Problem Statement

4.1 Problem Formulation

The input-output structure is as given as follows for this problem statement

1. Input:

(a) List of all PNRs (passenger name records)

(b) List of all flights and their schedules

(c) List of disrupted flights

(d) List of business rules

(e) List of penalty scores

2. Output:

(a) List of re-accommodated PNRs along with updated itineraries

(b) List of un-accommodated PNRs

(c) Email notifications to impacted PNRs regarding changes in itinerary or cancellation
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To manage input and output, a business rule engine is required. This engine allows the
user (typically an airline) to input data, flexibly adjust business rules and penalty scores, and
receive the corresponding output.

4.2 List of Flight Disruptions

1. Schedule Duration Change: This is addressed by treating the situation as a can-
cellation of the original flight, followed by the addition of a new flight at the adjusted
times.

2. Schedule Deletion (Cancelled Flight): This scenario is straightforwardly handled as
a case of a cancelled flight.

3. Aircraft Type Change: In this instance, the process involves cancelling the initial
aircraft allocation and subsequently adding a new aircraft of the changed type to the
schedule at the same time.

4. Frequency of Schedule Change: This is managed by cancelling the flight in the older
schedule and then adding a new flight with the altered timing.

Thus, all the types of disruptions can be reduced to flight cancellations. Hence in our
approach, we cancel one or many flights in the dataset and propose a solution.

4.3 Requirements

Each alternate flight solution/ reassignment has the following additional requirements .

1. The re-accommodation should be done at PNR level, i.e. all PAX (number of passengers)
of an impacted PNR should be provided accommodation in same physical space, i.e. Same
Aircraft and Cabins.

2. We restrict the number of connecting flights proposed in a solution to avoid offering
absurd solutions to passengers.

3. The solution having the same departure and arrival city, is a soft constraint to ensure
maximum convenience for the passengers however solutions with flights to nearby airports
are preferred over not assigning a passenger.

4.4 Business Challenges

Handling the complexity of this problem requires addressing a wide range of operational and
rule-based challenges, which can be summarized as follows:

1. Multi-City Bookings: This edge case arises when a PNR includes multiple bookings
spanning a time greater than MAXCT (Maximum Connection Time) window.
E.g., PNR P has a booking from Airport A to Airport B on Day X and another from
Airport B to Airport C on Day Y, which is after Day X.
The challenge here is to generate assignments that adhere to the ETD (Estimated Time
of Departure) constraints as mentioned in the rule set. Additionally, if only one segment
of the booking is disrupted, the newly proposed schedule should not negatively impact
the other bookings within the same PNR.

3
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2. Round Trip Bookings: This situation involves a PNR with bookings from an origin
airport to a destination and then back to the original airport.
E.g., PNR P has a booking from Airport A to Airport B and then from Airport B back
to Airport A.
The associated challenge is ensuring that the algorithm can efficiently handle these self-
looping scenarios (where the initial source and final destination are the same) without
introducing any errors or inefficiencies.

3. Connecting Flights: This edge case pertains to a PNR that includes multiple flight
legs within the MAXCT time window.
E.g., PNR P has flights from Airport A to Airport B, and from Airport B to Airport C,
with the layover time between the airports falling between MCT (Minimum Connection
Time) and MAXCT.
The core challenge is to develop an algorithm capable of proposing alternative flights that
comply with both the MCT and MAXCT constraints.

4. 1-1, Multi-1 Assignment Preference: The problem statement specifies that 1-1 and
Multi-1 assignments should be preferred in cases involving connecting flights.
Therefore, the algorithm should be designed to prioritize these types of assignments, when
feasible, over Multi-Multi and 1-Multi assignments. This ensures optimized scheduling in
line with the given criteria.

5 Solution Methodology

Our approach uses a hybrid classical-quantum approach to solve the passenger re-accommodation
problem. Our interface provides flexibility for the airline to make changes to their default
rule set for flight ranking, passenger ranking, cabin upgrading and downgrading, etc. which
plays a vital role in the objective function of our model. We also provide a mailing option
for the airline to gather passenger preferences and finally rank different solutions and export
them in a file. All the steps have been summarized in Figure 1. The steps of our algorithm are
described in detail in the following subsections:

5.1 Identification of Impacted PNRs

We first identify all the impacted PNRs for whom any flight in their itinerary is disrupted. At
this stage, we handle the Round-Trip Bookings and Multi-City Bookings by splitting the PNRs
if the time between two subsequent flights in their itinerary is greater than MAXCT window
since it is the maximum time till which a flight can be considered as a connecting flight.
E.g. Consider a scenario where a PNR P includes a round-trip booking from MAA to BOM, depart-
ing on 19-12-2023 22:30 Hrs, and a return flight from BOM to MAA departing on 20-12-2023

20:45 Hrs. In our approach, this PNR P is divided into two separate entities:

• PNR P#0, encompassing the outbound flight from MAA to BOM scheduled for 19-12-2023
22:30 Hrs.

• PNR P#1, comprising the return flight from BOM to MAA on 20-12-2023 20:45 Hrs.

Each of these split PNRs is then processed individually within our algorithm. This splitting
methodology is similarly applied to multi-city bookings. This approach not only aids in algo-
rithmic processing but also provides valuable insights to the airline regarding the volume and
nature of multi-city and round-trip bookings.
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Identify Impacted
PNR

Finding Feasible
FlightsRanking Passengers

Adding Constraints
to Ruleset

Defining the Cost
function

Modelling as CQM

Check for different
city pairs
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PreProcessing

Quantum Solver Customer
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Results

Figure 1: Workflow of the proposed solution
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5.2 Development of the Airline Route Graph

Employing the NetworkX Python library, we constructed an aviation route graph, modeled as a
Multi DiGraph(as there can be multiple flights between two airports). Airports are represented
as nodes, identified by their IATA codes. For each air route connecting airport A to airport B, a
directed edge from A to B is inserted into the graph as shown the example graph generated in
Figure 2.

MAA CNN

DEL

CJB

COK

IDR

PAT

JAI

AMD

HYD

Figure 2: Flight Di-Graph

5.3 Identification of Alternate Feasible Flights

Following the graph construction, each entry in the Impacted PNR list is processed to identify
alternate flight routes, employing a modified Depth First Search algorithm on the graph. Flight
paths are computed from the departure airport of the earliest disrupted flight from the list of
scheduled flights for this PNR to the final destination with the number of connecting flights
limited to a maximum of k = 4 (configurable by the airline).

This method addresses the Generation of 1-1, Multi-1 options, as it searches for all feasible
paths within the set length constraint, adjustable by the airline. Our algorithm’s efficiency
is notably enhanced through:

• Dynamic Programming: To circumvent redundant computations for PNRs with iden-
tical disrupted departure and arrival airports, we integrate memoization and back-
tracking. This strategy leads to a significant improvement in time complexity.

• Prune and Search: We visit an edge to be included in path only if it satisfies MCT,MAXCT,
ETD conditions, otherwise it is not visited. This reduces the original time complexity of
algorithm from O(n !) to O(len(Feasible Paths)).

6
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• Iterative Methodology: We replace the recursive approach of the Depth First Search
algorithm with an iterativemethod using stacks, enhancing scalability for large datasets
of flights.

Upon identifying potential routes, we once again evaluate their feasibility by verifying
adherence to Minimum and Maximum Connection Time (MCT and MAXCT) criteria among
successive flights, and by aligning with the ETD guidelines for the entire trip, thus conforming
to the established rule-set. In instances where the PNR undergoes segmentation as described
in the example in Identification of Alternate Feasible Flights, we ensure that the proposed
alternative flight not only complies with MCT, MAXCT, and ETD requirements in isolation
but also maintain these standards in relation to subsequent flights within the split itinerary.

5.4 Cost Function

We have chosen the cost function for a PNR to itinerary mapping as:

a ∗ log (s1) + b ∗ log (s2) + c ∗ log (s3) (1)

where,

1. s1 is the flight quality score of the proposed itinerary, which depends on three pa-
rameters:

(a) Arrival delay at the final destination

(b) Departure delay from the start airport, as per industry standards, we have
added more penalty for preponing the schedule for the PNR in comparison to
postponing the schedule. It also makes sense practically, as it is difficult to prepone
schedules compared to postponing them.

(c) Connection Score: which depends on Number of connections in the journey,
so as to reward less number of connections, the score is calculated as:

Connection Score = CC− PL+ OL (2)

where:

CC : Connection Constant(CC)
PL : Number of flight hops in proposed itinerary
OL : Number of flight hops in original itinerary

This ensures that the score increases if the length proposed itinerary is as small as
possible, rewarding 1-1 and Multi-1 solutions. Connection Constant is a constant
to normalize the score.

We define the Delay Score as:

Delay Score = Arrival Delay + Departure Delay (3)

We have taken s1 as:

s1 = σ(Delay Score ∗ Connection Score) (4)

where the σ is the sigmoid of function. The product of the two quantities is taken so that
one quantity doesn’t overshadow the other.

7
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2. s2 is the PNR Ranking Score of the given PNR, which depends on three parameters:

(a) Special services request (SSR) score, which has been divided into two categories,
one with medical requests, one with food requests, for the airlines to define the
score of SSR based on the category

(b) Loyalty score based on the classes CM, Platinum, Gold, Silver

(c) PAX Score, which is the score based on the number of passengers booked on the
given PNR

All three scores have been normalized using the min-max normalization.
We have taken s2 as:

s2 = σ(SSR Score + Loyalty Score + PAX Score) (5)

where the σ is the sigmoid of function.

3. s3 is the Class Quality Score, which is calculated based on whether the PNR is getting
a net upgrade or downgrade in the proposed itinerary. This is found out by calculating the
average cabin score of the passenger in the proposed and original itinerary. The average
cabin score is nothing but the weighted average of the cabins occupied by the PNR in
the flights of an itinerary. The weights of each cabin (FC, BC, PC, EC) is based on the
industry standard [4].

• As roughly the price of the ticket of EC is the cheapest, it is assigned a weight of 1.

• As roughly the price of the ticket of PC is 1.5 times the price of EC ticket, it is
assigned a weight of 1.5.

• As roughly the price of the ticket of BC is 2 times the price of PC ticket, it is assigned
a weight of 3.

• As roughly the price of the ticket of FC is 2 times the price of BC ticket, it is assigned
a weight of 6.

We have penalized downgrades more than upgrades, keeping in mind the concept of
customer retention, because the booking of the Cabins is based on the luxury of that
particular Class and a person is always prepared for an upgrade and never prepared for
a downgrade. Again, s3 is based on the sigmoid function.

4. a, b, and c are the weights of all the scores, and the weights are configurable by the user,
improving the flexibility of the model. The sum of the weights can also be fixed so that
we can compare the relative magnitude of the weights.

Why use logarithm and sigmoid functions?

We have used the sigmoid function, to normalize all the scores to a common level, so only
the change of weights a, b, and c changes the importance of any score.

The use of logarithm in the cost function is quite strategic as its rate of change is not constant.
This helps when comparing the change in the situation of two PNR itineraries. Any change
in the situation of a low PNR-itinerary score should be penalized/rewarded more compared to
the change in the situation of a high PNR-itinerary situation, as things become increasingly
critical as the PNR-itinerary score decreases, for example:
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• If the delay of a PNR with a high delay is reduced, and the delay of a PNR with a low
delay is also reduced, the change in cost function can’t be the same for both the PNRs,
and the change should be more in the former case.

the logarithm fits all the requirements for the said usage, as it is a concave function.

Figure 3: Logarithm is a concave function

5.5 CQM Modelling of the Problem

Constrained Quadratic model(CQM) can be defined mathematically as:

Minimize an objective:∑
i

aixi +
∑
i≤j

bijxixj + c,

Subject to constraints:∑
i

a
(m)
i xi +

∑
i≤j

b
(m)
ij xixj + c(m) ◦ 0, m = 1, . . . ,M,

{xi}i=1,...,N can be binary, integer, or continuous variables, ai, bij, c are real values, ◦ ∈ {≥,≤,=}
and M is the total number of constraints.

The ConstrainedQuadraticModel class offered by dimod can contain this model and its meth-
ods provide convenient utilities for working with representations of a problem.

5.5.1 Objective Function

Maximize:
∑
i∈I

∑
j∈Fi

∑
k∈K

CijkXijk

+
∑
i∈I

(Non-Assignment-Cost× (1−
∑
j∈Fi

∑
k∈K

Xijk))

• Cijk represents the cost to accommodate the ith PNR to the kth cabin of the jth flight.

• Xijk is a decision variable that is 1 when the ith PNR is assigned to the kth cabin of the
jth flight.
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• I represents the set of all Impacted PNRs.

• ni represents the number of passengers in the ith PNR.

• K represents the set of all cabins.

• bjk represents the available inventory in the kth cabin of the jth flight.

• Fi represents the set of Feasible Flights for the ith PNR.

• Non-Assignment-Cost is a configurable constant and represents the penalty applied
when a PNR is not accommodated successfully.

The first part of the objective function Maximize (
∑

i∈I
∑

j∈Fi

∑
k∈K CijkXijk) signifies the re-

ward associated with assigning a passenger i.e the assignment cost.

The second part of the objective function
∑

i∈I Non-Assignment-Cost∗ (1−
∑

j∈Fi

∑
k∈K Xijk))

denotes the penalty associated whenever the model is unable to assign a PNR as the Non-
Assignment-Cost will be negative.

Since the standard CQM has a minimization objective we simply multiplied the objective
function with -1 to convert this problem into a minimization problem.

Minimize: (−
∑

i∈I
∑

j∈Fi

∑
k∈K CijkXijk −

∑
i∈I Non-Assignment-Cost ∗ (1−∑

j∈Fi

∑
k∈K Xijk))

5.5.2 Constraints

Using Constrained Quadratic Modelling (CQM), we try to map every Impacted PNR to one
of its feasible alternate flights till the Cabins level. The problem has two hard constraint,
constraints that are not to be violated in any solution.

Capacity Constraint
This constraint ensures that no flight is booked beyond its available inventory:∑

i∈Pj

Xijk ∗ ni ≤ bjk ∀k ∈ K ∀j ∈ F

• Pj represents the set of PNRs for which Flight j is feasible.

• F represents the set of all Flights that are feasible for atleast one PNR.

For modeling the constraint on a standard CQM it was formulated as:-∑
i∈Pj

Xijk ∗ ni − bjk ≤ 0 ∀k ∈ K ∀j ∈ F

Assignment constraints
This constraint ensures that no PNR is assigned the same flight twice:∑

j∈Fi

∑
k∈K

Xijk ≤ 1 ∀i ∈ I

For modeling the constraint on a standard CQM it was formulated as:-∑
j∈ Fi

∑
k∈K Xijk − 1 ≤ 0 ∀i ∈ I

10
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5.6 Quantum Strategy using D-Wave

1. To solve the problem using Quantum Computing, the problem was Modelled using the
powerful [5] CQM(Constrained Quadratic Model) by D-Wave instead of the old BQM
(Binary Quadratic Model) by D-wave due to the following reasons:

(a) BQM doesn’t support making constraints inherently. We worked around this fact by
introducing penalty scores for breaching some conditions, even then BQM couldn’t
solve our problem for large datasets.

(b) BQM Solver frequently violated the feasibility constraints.

(c) Moreover the running time of BQM Solver was way worse than the CQM Solver as
shown in Table 7.

2. The model was pre-processed using D-wave’s presolver to reduce the number of variables
before passing the CQM to the solver thereby reducing the complexity of the model and
a reduced run time on the hybrid solver.

3. LeapHybridCQMSampler was used to sample the solutions of the problem and generate
all the low energy solutions, the sample set was then filtered based on the problem
constraints to obtain all the feasible low energy solutions.

The LeapHybridCQMSampler works on this methodology. The model extracts the top 3
low-energy solutions from the set of feasible solutions returned by the LeapHybridCQMSam-
pler. At this stage of the pipeline, majority of the impacted PNRs have been successfully
mapped to an alternate Flight and a Cabin obeying all constraints.

5.7 Consideration of different City Pairs

In cases where the algorithm leaves some PNRs without suitable accommodations, alternative
resolutions are sought by considering varying city pairs. For each disrupted PNR, we identify
the k = 3 closest neighbouring airports to its intended destination using KDTree data-structure
and utilizing real-time traffic data and the travel time between the original and proposed
airports, as determined by the Distance Matrix API Accurate. We exclude any alternative city
pair if the travel duration from the original to the proposed airport exceeds the CP-THRESH
limit. When multiple city pair alternatives are available for an impacted PNR, they are ranked
and scored according to the following equation:

1

dα + tβ + ϵ
(6)

where:

d : Distance of the road journey between the initial and the proposed airport
t : Time taken in real-time to travel from the initial airport to the proposed one
ϵ : A negligible value to prevent overflow errors
α, β : Parameters to balance the significance of d and t in the scoring formulae

This scoring mechanism favours alternatives that are closer and require less travel time.
Subsequently, the methodology outlined in the preceding sections is replicated, adapting the
arrival airport to the new proposed airport(s).
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Figure 4: Network Flow Graph
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Notation:
si – Supply of PNRi (number of passengers)
dj – Demand of Classj (Capacity of the class)

5.8 Quantum Network Flow

After we have assigned a Cabin and a Flight to each of the PNRs (done at the PNR level), we
need to assign Class to each of the passengers in the PNR inside that particular cabin. This
is done with the use of Network Flow, specifically min-cost-max-flow.

1. Flow Network Structure: The system can be elegantly represented as a fully con-
nected bi-partite graph. In this model, the nodes on the left symbolize the PNRs
assigned to a specific Cabins, while the nodes on the right correspond to the Classes
within that Cabin. Each PNR node is assigned a ’supply’ value, equivalent to the num-
ber of passengers in the PNR. Conversely, the Class nodes reflect the ’max-capacity,’
representing the available seats remaining in each class.

Illustrated in Figure 4, the structure of the Flow-graph demonstrates this setup.

Each Class node connects to a global sink via edges with capacities equal to the remaining
capacity of the respective class. These edges, assigned a zero cost, ensure that all flow
reaching a class must ultimately go to the global sink. This design places an upper
bound on the max-flow that can reach each class node as the capacity of that edge is the
remaining capacity of that class node. For instance, if there are two classes with remaining
capacities of 3 and 5, two edges are constructed with capacities 3 and 5, respectively, and
a cost of 0 each, connecting each class to the sink.

2. Cost Functions: Each of the inner edges of the fully connected bi-partite graph has a
cost which is the loss that will occur or the negative of the score that the airline gets if a
particular passenger of that PNR is assigned to the corresponding Class. Our min-cost
max flow algorithm (Classical approach) will calculate the maximum flow (assigns
every PNR a Class) with minimum cost or the maximum score. First, we solved
it classically then we formulated it as a CQM [6] problem and solved it using quantum
flow.

12
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• Our business rule engine assumes a Class-Class mapping which has to be followed
during the change of classes as a soft constraint.

• For defining our cost function, we do the following:
Let Corig be the original class of a passenger, and Cnew be the proposed new class.
The airline provides a mappingM that specifies acceptable class changes, where each
class C is mapped to a set of classes M(C) to which a passenger can be reassigned
without significant penalty.

The cost function f for reassigning a passenger from Corig to Cnew is defined as
follows:

– If Cnew ∈ M(Corig), the new class is in the approved mapping of the original
class. In this case, the cost is decreased to reflect a favorable class change. The
cost function is given by:

f(Corig, Cnew) = −PNR Score× Class Change Constant

– If Cnew /∈ M(Corig), the new class is not in the approved mapping of the original
class. In this case, the cost is increased to penalize the unfavorable class change.
The cost function is defined as:

f(Corig, Cnew) = +PNR Score× Class Change Constant

Here, Class Change Constant is a predefined constant that quantifies the cost of
changing the class.

3. Quantum Network Flow using CQM: We can convert this into a CQM and solve
using CQM solver using quantum computing.

Objective Function: Minimize
(∑

CijXij

)
Supply Constraint: ∀i ∈ PNRs

∑
j

Xij = ni

Demand Constraint: ∀j ∈ Classes
∑
i

Xij ≤ bj

where,

• Cij represents the cost(loss) to accommodate the ith PNR’s passenger to the jth

Class.

• Xij represents number of passengers of the ith PNR who were accomodated in jth

Class.

• ni represents the number of passengers in the ith PNR.

• bj represents the number of remaining seats in the jth Class.

Objective function:- As it is a min-cut max flow problem, we are trying to minimize
the costs or the negative of the scores. Since Cij is the cost per unit passenger if i

th PNR’s
passenger to the jth Class, we multiply it by number of passengers going to that Class
and add it to the total cost.

The Supply Constraints ensures that every passenger of a PNR is mapped to a partic-
ular Class or mathematically incoming flow = outgoing flow(conservation of flow).

13
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The Demand Constraints ensures that the maximum capacity of a class is not violated
while accommodating the passengers.

Thus by solving the above formulation inCQM solver ofDWave, we can find the optimal
value of the variables Xij ’s and from that retrieving the optimal mapping is trivial, for
example: Assume that X12 = 5, this implies that 2 passengers of PNR = 1 are assigned
to Class numbered 2 and so on similarly.

4. Concurrent Processing: As, the task of assigning Classes to PNRs of each pair of flight-
Cabin tuple is independent, we utilize parallel processing to speedup the operation.
Data integrity is safeguarded through using Locks in shared data structures.

5.9 Customer Feedback

The quantum solver presents three leading solutions, each associated with specific class assign-
ments via the Quantum Network Flow algorithm. The Majority Voting Algorithm [7]
is integral here, as it integrates customer feedback into the decision-making process.

Each accommodated PNR is sent an email (Refer Figure 5) with these three flight options.
Passengers’ preferences are meticulously evaluated, with each solution gaining a weighted score
based on their PNR rankings. The solution that gets the most votes, reflecting the majority
preference, is then selected as the final decision.

Figure 5: Our business rule engine mails the impacted PNRs their proposed schedule and asks
for their choice.

6 Flexibility

Our solution stands out for its flexibility, particularly in accommodating various business
rules, and allowing airlines to modify scores and parameters to obtain tailored solutions.
For example, airlines are provided with options to allow for the upgrade or downgrade of
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cabins through our business engine adding another layer of customization to the solution. For
more, refer Figure 10, 12, and 11 of Appendix C.

Furthermore, our system offers flexibility in adjusting the CC. For instance, setting a lower
CC tends to prioritize flights with fewer hops, even if they have delays. Conversely, increasing
the CC shifts the preference towards flights with minimal delays, regardless of the number of
hops involved. Consider the following impacted PNR given in Table 1 and the feasible flights,
including the cancelled ones, are listed in Table 2:

Table 1: PNR

PNR Number Inventory ID
PNR001 INV-ZZ-1875559

Table 2: Flights

Inventory ID Departure
city

Arrival city Departure
time

Arrival time Status

INV-ZZ-1875559 MAA CNN 2024-06-1
04:37:00

2024-06-1
6:50:00

Cancelled

INV-ZZ-1875562 MAA CNN 2024-06-1
20:37:00

2024-06-1
22:50:00

On Time

INV-ZZ-1875563 MAA GAU 2024-06-1
6:37:00

2024-06-1
9:50:00

On Time

INV-ZZ-1875564 GAU CNN 2024-06-1
11:37:00

2024-06-1
14:50:00

On Time

With a lower CC (between 0 and 1), the system favors direct flights, such as the one with
Inventory ID INV-ZZ-1875562, despite its higher arrival delay. However, as the CC is increased
beyond a certain threshold, the preference shifts to connecting flights, specifically those with
Inventory IDs INV-ZZ-1875563 and INV-ZZ-1875564.

Table 3: At higher CC, lower arrival delay is given more priority

PNR Number Inventory ID
PNR001 INV-ZZ-1875563, INV-ZZ-1875564

Table 4: At low CC, lower number of flights is given more priority

PNR Number Inventory ID
PNR001 INV-ZZ-1875562

Thus, airlines can fine-tune various scores, rules, and preferences based on different fac-
tors, demonstrating the solution’s extensive adaptability and customizability. This adaptability
makes our solution a robust tool in the dynamic airline industry.

7 Results

Results in table 5 have been generated with our Hybrid Classical-Quantum Model outlined
in previous sections on two datasets, one containing 603 flights and another containing 2012
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Table 5: Solution Statistics, where the last two rows are from the dataset given by Mphasis.

Total
Flights

Impacted
PNR

Re-
accom.
PNR

# of Up-
grades

# of
Down-
grades

# of
Same
City Pair

# of
Different
City Pair

Mean
Arrival
Delay (in
hr)

603 87 69 37 13 69 0 22.023
2012 490 394 154 143 394 0 25.544
2012 629 629 331 165 622 7 30.356
2012 1233 1118 474 380 1109 9 31.563

6.2 6.4 6.6 6.8 7 7.2

Accomodated PNR

Non Accomodated PNR

Figure 6: Box plot for distribution of PNR Scores

flights. We canceled some combination of flights and analyzed the results with upgrades,
downgrades and different city-pairs enabled.

This demonstrates that our model exhibits robust performance, even when handling
extensive datasets. It effectively optimizes outcomes by balancing the trade-offs among the
number of re-accommodations, the average arrival delay, and the instances of passenger up-
grades and downgrades.

The boxplot for them scores of impacted PNRs has been drawn as shown in Figure 6. We
draw the following conclusions:

• Since the upper quartile [8] of the assigned PNRs (6.625)is higher than the upper quartile
of non-assigned PNRs (6.569), it means more PNRs have a higher ranking in accommo-
dated than non-accommodated (refer row 4 of Table 5).

• For both distributions, the median [8] is the same (6.54), indicating that evenness is
given.

• The upper whisker value [8] is higher for the accommodated PNR’s box plot (7.125 >
7.04) which indicates a higher PNR being accommodated (row 4 of Table 5).

8 Discussion and Scalability

We solved the problem as Multi Integer Programming (MIP) model classically using Gurobi
Optimization solver. Since Gurobi is recognized for its exceptional performance as an MIP
solver [9], we deliberately chose Gurobi as the benchmark against which to evaluate DWave’s
LeapHybridSolver.
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Note: We use Average QPU Access Time [10] and refer it as Average Quantum Time
measure against the time taken to solve the problem classically by Gurobi optimizer. The
following Table 6 gives the time for various parts of our pipeline: We drew the following

Table 6: Solver Time Data, where the last two rows are from the dataset given by Mphasis.

Total
Flights

Net Im-
pacted
PNR

# of
Vari-
ables

# of
Con-
straints

Avg.
Clas-
sical
Time
(in ms)

Avg.
Quan-
tum
Time
(in ms)

% of
Abs.
Differ-
ence in
Score

Pre-
Process
Time
(in s)

Network
Flow
Time
(in s)

603 87 1352 103 995 16.03 0.003 0.7 0.023
603 518 8312 495 129.33 16.04 0.0005 3.43 0.139
2012 490 4844 533 3439.67 21.37 0.008 5.64 0.073
2012 1233 32768 1603 3623 16.05 0.36 17.96 0.292

conclusions from the above comparison:

• There is very small difference between the score that is maximised by classical and quan-
tum.

• Beyond a specified threshold of impacted PNRs (e.g., 518 dataset), Gurobi stops yielding
results without a purchased license. In contrast, DWave’s LeapHybridSolver consistently
produces results under its free developer access.

• The Quantum approach using DWave’s LeapHybridSolver achieves the optimal result
faster than classical approach using Gurobi as reported by the above table.

• We also explored other approaches such Quantum Approximate Optimisation Al-
gorithm(QAOA) implemented on gate-model quantum computers. However, literature
review clearly states that DWave BQM outperforms QAOA on several gate-model quan-
tum computers by a huge margin[11]. There is also an enormous challenge of scalability
and accuracy in the latter approach[12].

9 Conclusion

In this report, we address the Problem Statement by implementing a robust business rule
engine. The designed engine exhibits a high degree of flexibility, accommodating dynamic rule
changes and adjustments to penalties, as may be necessitated by end-users, typically within
the context of an airline operation.

Our solution provides users with alternative flight options, ranking them based on met-
rics such as total impacted PNRs, mean arrival delay, and the count of solutions falling
into the categories of 1-1, 1-Multi, and Multi-1.

To formulate this complex problem, we leveraged a CQM and employed D-Wave’s Leap
Hybrid Solver. Various techniques, including quantum network flow for class assign-
ment, KDTree for identifying neighboring airports, and Depth First Search for pruning
and searching the solution space, were rigorously applied.

Remarkably, our findings indicate that quantum computers excel in solving this problem,
outperforming classical computers in terms of speed and efficiency.
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A D-Wave Quantum Computers

DWave’s hybrid solvers mix classical heuristic solvers and quantum processing units (QPU).
When a problem is given to the solver, firstly the heuristic solvers act on it and then they
query the QPUs for fast and effective results.

Figure 7: Working of DWave’s hybrid solvers.

D-Wave provides a host of quantum computers that work on the principle of quantum
annealing [13]. The architecture of these computers allows us to minimize the energy of an
Ising-like system[14]. Each qubit is constructed using a current-carrying superconduct-
ing loop, where the magnetic field in the clockwise direction represents 0 and the anti-clockwise
direction represents 1. Being a quantum object, the qubits exist in a superposition of 0 and
1. An external bias field and coupling between the qubits are controlled to model a particular
quadratic problem in the hardware of the Quantum Processing Unit. The Hamiltonian can be
represented as follows,

H = −A(s)

2

(∑
i

σ̂(i)
x

)
︸ ︷︷ ︸

Initial Hamiltonian

+
B(s)

2

(∑
i

hiσ̂
(i)
z +

∑
i>j

Jijσ̂
(i)
z σ̂(j)

z

)
︸ ︷︷ ︸

Final Hamiltonian

where σ̂
(i)
x,z are the pauli matrices[15] acting on ith qubit, Jij is the coupling parameter and hi

is the external bias. The initial Hamiltonian has a well-known ground state where all possible
qubit states have equal probability of occurrence. The final Hamiltonian is the answer to the
problem that we are trying to solve. The annealing process takes place in the following fashion,

1. Initially, A(s) is set to a high value and B(s) is set to 0. In the ground state, all qubits
are in the superposition state.

2. A(s) is slowly reduced and B(s) is increased. The effect of initial Hamiltonian is less
pronounced and the system still remains in the ground state owing to the adiabatic
theorem[16].

3. Running the annealing process too fast can lead the system to escape from the ground
state. There could also be thermal fluctuations that disturb the system. For this reason,
our problem gives multiple solutions that are not always perfectly optimal according to
the Hamiltonian.

4. Finally, A(s) becomes 0 and all the qubits take one of the bit states, 0 or 1. Since, it’s a
quadratic problem, there can only be one global optimum and thus, no superposition is
possible in the ground state.
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B BQM vs CQM

The below table shows the comparison of processing times of BQM and CQM for the problem.
We use the QPU access time to compare both BQM and CQM solver of DWave because it
is the time which is not affected by network and scheduling latencies (see Figure 8)

Figure 8: We follow the definition provided by DWave for measuring QPU time.

Table 7: Comparison of BQM and CQM, where the last row is from the dataset given by
Mphasis.

Net Impacted PNR BQM QPU time (in ms) CQM QPU time (in ms)
87 42.747 16.03
490 128.151 21.37
518 170.875 16.04
1233 Could not solve the prob-

lem
16.05
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C Pictures of the Business Rule Engine

Figure 9: The landing page of our engine, you can generate the solutions, while opting for
different city pairs or not, and also mail the impacted PNRs their changed itineraries.

Figure 10: Our business rule engine allows for the modification of various scores related to
PNR.

Figure 11: Our business rule engine allows for the modification of various scores related to
PNR-itinerary mapping.
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Figure 12: Our business rule engine allows for the modification of various scores related to
Class-Class mapping.

Figure 13: A Solution generated by our engine.

Figure 14: Our engine also shows the statistics related to the best solution generated.
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Figure 15: Our engine also shows the PNRs whose arrival city is different from what they had
booked.
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Glossary

1-1 Replacing every impacted flight with another single-legged flight. 4, 6, 7, 17

1-Multi Replacing every impacted flight with multi-legged flights. 4, 17

Cabin Cabins physically divide a plane into different categories, each with its own price and
set of rules. There are four main cabins - First (FC), Business (BC), Premium Economy
(PC) and Economy (EC). 3, 8, 10, 12, 14

CC ”Connection Constant”, a constant to normalize the connection score. 7, 15

Class Each cabin is logically further divided into various classes. They typically denote the
level of service or fare type purchased by a passenger. The class often determines the
amenities, seat comfort, services, and flexibility available during the flight. 8, 12–14, 21

CP-THRESH ”City Pairs Threshold”, indicates the maximum allowable travel time by road
between the initial airport in the booking and the suggested airport in an alternative
solution. 11

CQM D-Wave’s CQM(Constrained Quadratic Model) supports problems of the form:

Minimize an objective:∑
i

aixi +
∑
i≤j

bijxixj + c,

Subject to constraints:∑
i

a
(m)
i xi +

∑
i≤j

b
(m)
ij xixj + c(m) = 0, m = 1, . . . ,M,

. 10, 12–14, 17

ETD Estimated time of departure of a planned flight. 3, 6, 7

hard constraint Constraints which can’t be violated at any cost. 10

MAXCT Maximum Connection Time between two connecting flights. 3, 4, 6, 7

MCT Minimum Connection Time between two connecting flights. 4, 6, 7

Multi-1 Replacing a subset impacted flights with a single-legged flight. 4, 6, 7, 17

Multi-Multi Replacing a subset impacted flights with another multi-legged flights. 4

PAX PAX denotes the number of passengers attached to a single PNR. 3, 8

PNR Passenger Name Record data is unverified information provided by passengers and col-
lected by air carriers to enable the reservation and check-in processes. The data is used
by the air carriers to manage their air transportation services. 2–4, 6–14, 16, 17, 20, 22

soft constraint Constraints which may be violated, but there is a penalty for violating it.
3, 13

SSR SSR stands for Special Service Request. SSRs are codes used within the airline industry to
communicate specific passenger or flight-related requests and information to the airline’s
reservation and operation systems. 8
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