Study of long-context LLM capabilities for Fine-grained Named Entity
Recognition in Indian Languages

A B. Tech Project Report Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Bachelor of Technology

by
Adittya Gupta
(210101007)

Gautam Sharma
(210101042)

under the guidance of

Prof. Ashish Anand

(%
(] of Tg]c‘.“l""nk

to the
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI
GUWAHATTI - 781039, ASSAM

CERTIFICATE

This is to certify that the work contained in this thesis entitled “Study of long-context
LLM capabilities for Fine-grained Named Entity Recognition in Indian Lan-
guages” is a bonafide work of Adittya Gupta (Roll No. 210101007) and Gautam
Sharma (Roll No. 210101042), carried out in the Department of Computer Science and
Engineering, Indian Institute of Technology Guwahati under my supervision and that it has

not been submitted elsewhere for a degree.

Supervisor: Prof. Ashish Anand

Professor,
April, 2025 Department of Computer Science & Engineering,

Guwahati. Indian Institute of Technology Guwahati, Assam.

Acknowledgements

We would take this opportunity to thank Prof. Ashish Anand, Department of Com-
puter Science and Engineering, II'T Guwahati, Mr. Prachuryya Kaushik, PhD Candidate,
Department of Computer Science and Engineering, IIT Guwahati, and Ms. Ajanta Mau-
rya, PhD Candidate, Department of Computer Science and Engineering, II'T Guwahati, for
their invaluable support during the Problem Statement Formulation, and helping in gaining
extensive insight into the result of the experiments that were conducted during the making
of this thesis project. I also thank AMal Lab, II'T Guwahati, for providing the necessary

resources for conducting experiments.

i

Abstract

Vast training data has powered current advancements in machine and deep learning models.
Recently, the demand for such datasets has increased in multiple ways to accommodate
new and expanding domains. Previously, such datasets were made using excessive human
intervention, such as crowdsourcing through a large population, hiring annotators, etc. Such
methods are time-consuming, resource-consuming and have low scalability. This thesis project
tries to automate the process of Fine-grained Named Entity Recognition for Indic
Languages, a task that is fundamental in creating large and accurate datasets, by studying
long context large language models, making the process of creating large and labelled datasets
fast and cheaper compared to older methods. Through this project, we propose a method to
create Fine-grained Named Entity Recognilion datasets for Indic languages and support the

validity of our method with various experiments.

il

Contents

List of Figures vi
List of Tables viii
1 Introduction 1
1.1 Organization of the Report 2

2 Review of Prior Works 3
2.1 Popular datasets in the domain 3
2.1.1 FewNERD 3

2.1.2 MultiCoNER-v2 4

2.2 State of the Art (SOTA) methods of dataset labelling for NER task 4
221 TaLLoR)

2.2.2 Snorkel 5

2.2.3 Coarse2Fine 7

2.3 SOTA methods for labeling using LLM 7
2.3.1 Can Large Language Models Design Accurate Label Functions? . . . 7

2.3.2 Language Models in the Loop 8

2.4 Few-shot learning models in NER 0. 8
2.4.1 CONTaiNER 9

2.5 Prompt Learning Lo 9

v

2.5.1 Prompt-Learning for Fine-Grained Entity Typing [1] 10

2.5.2 OpenPrompt: An Open-source Framework for Prompt-learning [2] . . 10

2.6 Prompt Engineering Techniques 12

2.6.1 Automatic Prompt Engineering 12

2.6.2 Chain of Thought Prompting 13

2.6.3 Tree of Thought Prompting 15

2.6.4 Graph of Thought Prompting 15

3 Problem Statement and Methodology 18

3.1 Problem 18

3.1.1 RawtoFine (R2F) oo 18

3.1.2 Translation with Annotation (TrA) 19

3.2 Challenging nature of the Problems 20

3.3 Proposed Methodology 20

331 R2F:Rawto Fine 20

3.3.2 TrA: Translation with annotation 24

3.3.3 Use of Gemini for Long-Context Modeling 27

4 Experiments & Results 29

41 Raw to Fine (R2F) 30

4.1.1 Experiment-0: Qualitative Testing of the LLM 30
4.1.2 Experiment-1: Finding the acceptable number of sentences that can

be labelled in one prompt 32

4.1.3 Experiment-2: Fine-tuning LLM 35

4.1.4 Experiment-3: Changing the Model 37

4.1.5 Experiment-4: Better Instruction Prompts 38

4.1.6 Experiment-5: LLM Voting Algorithm 38

4.2 Translation with Annotation (TrA) 40

4.2.1 Experiment 0: Qualitative Analysis of TrA

4.2.2 Experiment 1: Vanilla prompt

4.2.3 Experiment 2: Chained output prompting

4.2.4 Experiment 3: Self-Consistent Prompting

4.2.5 Experiment 4: Biased Few Shot Prompting

4.2.6 Experiment 5: Tree of Thoughts prompting

4.2.7 Final results: Few shot testing, Bangla NER

5 Conclusion and Future Work

5.1 Future Directions

Bibliography

Appendices

A Text corpus limitation in MultiCoNER-2

B Examples used for LLM in-context learning in R2F

C Examples used for LLM in-context learning in TrA

vi

55
95

59

65

66

69

74

List of Figures

2.1 Comparison of the fine grained entities 4
2.2 Overview of TaLLoR framework 6
2.3 Overview of Snorkel framework 6
2.4 Language models in theloop L. 8
2.5 Overview of CONTaiNER framework. 9
2.6 MLM based learning tasks in Prompt Learning 11
2.7 Architecture of OpenPrompt 12
3.1 Example Input of R2F oo 18
3.2 Example Output of R2F 19
3.3 Example Input/Output of TrA 20
3.4 Comparing the complexity of coarse-labelling vs. fine-labelling 21
3.5 R2F: Comparing F1 methodology 22
3.6 An example prompt for R2F 23
3.7 R2F visualized 24
3.8 R2F Pipeline visualized o 24
3.9 An example of what TrA isdoing 25
3.10 TrA pipeline visualised 26
3.11 An example of prompt for TrA L 27
4.1 R2F: Experiment-0 One Off Errors 31

vii

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

5.1
2.2
2.3

Al
A2

R2F: Experiment-0 Not using context 32
R2F: Experiment-1 Instruction Prompt 34
R2F: LLMs returning Hardcoded Labelling Functions 34
R2F: Experiment-1 F1 Score by category 35
R2F: Experiment-2 Fine Tuning LLM 36
R2F: Experiment-3 F1 Score by category 37
R2F: Experiment-4 Instruction Prompt 38
Qualitative analysis for TrA with single label sentences 41
Qualitative analysis for TrA with multi label sentences 42
The vanilla prompt for TrA 43
Proper translations by vanilla prompting in TrA 44
Alignment issues in vanilla prompting 0. 45
Translation problems in COP 46
Chained Output Prompting prompt 47
Comparison of F1 scores label wise 48
Biased Few Shot Prompting for TrA 50
New prompt rules for BESP o 50
ToT pipeline for TrA 51
Example sentence for ToT oo 52
Working of RAG model 56
Working of an AT Agent 57
Model editing of LLMs o 57
Text-corpus comparison 67
Proving a pointo 68

viil

List of Tables

2.1

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Comparison of NER Datasets (not exhaustive) 5

Comparison of Training Dataset Sizes for Indic Languages and English in

Coarse and Fine-grained NER Tasks 22
Machine Learning Training Parameters 36
Example of majority voting across LLM outputs 40
R2F: Model Performance Comparison (F1 Scores) 40
Model Performance Comparison (F1 Scores) for Hindi 53
F1 scores comparison on CONTAINER(Few shot learning). 53
Model Performance Comparison (F1 Scores) for Bangla language 53
Translation scores comparison for English to Hindi 54
Translation scores comparison for English to Bangla 54

Chapter 1

Introduction

Recent breakthroughs in natural language processing (NLP) have been largely attributed
to the availability of vast amounts of training data and the emergence of large-scale language
models. Among these, Fine-grained Named Entity Recognition plays a crucial role in enhanc-
ing the quality and applicability of NLP tasks, especially for creating high-quality annotated
datasets. Although much of the research has focused on high-resource languages like English,
and tasks like Coarse-grained Named Entity Recognition, there remains a significant gap in
the availability of such resources for Indian languages.

Indian languages, with their diverse scripts, grammar structures, and contextual nu-
ances, pose unique challenges in NLP. Traditional methods of generating Fine-grained NER
datasets, such as manual annotation and crowd-sourcing, are time-consuming, costly, and not
scalable. This thesis explores the potential of long-context Large Language Models (LLMs)
to automate and improve the identification of Fine-grained NER tags in Indic languages,
thereby reducing reliance on manual annotation and expertise and increasing scalability and
efficiency.

This project presents a systematic study of the capabilities of long-context LLMs to han-

dle complex linguistic structures and maintain contextual coherence over longer text spans

in Indian languages. We propose a methodology to generate fine-grained NER datasets using

LLMs and validate the approach with comprehensive experiments and evaluation metrics.

1.1 Organization of the Report

This chapter provides the necessary background and outlines the motivation for the work
undertaken in this thesis. We began by discussing the challenges in Fine-grained NER for
Indian languages and how long-context LLMs can potentially address them.

The rest of the report is organized as follows. In Chapter 2, we provide a comprehensive
review of the existing literature on Fine-grained NER, LLM, and NLP for Indian languages.
Chapter 3 describes the proposed methodology, including dataset preparation, model archi-
tecture, and prompt design. Chapter 4 presents the experimental setup, evaluation metrics,
and results. Chapter 5 discusses the implications of the findings and limitations of our ap-
proach. Finally, Chapter 6 concludes the thesis and outlines possible directions for future

research.

Chapter 2

Review of Prior Works

2.1 Popular datasets in the domain

We first looked at various datasets that are currently present in the domain in which we
are working to get an understanding of the current SOTA datasets on which we have to
improve. We studied two such datasets: Few-NERD[3] and MultiCoNER-2[4] in this

context. The comparison between the fine-grained entity types is depicted in Fig. 2.1.

2.1.1 FewNERD (3]

o The paper introduces Few-NERD, a manual hand-labelled dataset designed for Fine-

grained Named Entity recognition tasks.

o This is the largest manually hand-labeled fine-grain dataset currently available for

English.

o This paper is important to get a basic understanding of how important good fine-
labeled data is in terms of training the model for tasks and how costly it is to get such
high-quality data. This work motivates the need for alternative, cheaper methods of

fine-labeling datasets.

2.1.2 MultiCoNER-v2 [4]

o The paper introduces MultiCoNER-v2, a fine-grain labelled dataset designed for a

fine-grained entity recognition task.

» This dataset consists of 12 languages, including multilingual subsets, with a total of
2.3M instances.

o The authors used Wikidata by creating a gazetteer for the entities and then

fine la-
belling using many of the Wikipedia sentences.

S s
2 Elif s
% % N/ /- o
%%, > o £
St 5
X 9 @
™ &
¢ 5, § w
4 % E‘ g da“‘“o‘
“6,, % < (O
73
o
x5°
vO
GPE Actor
Location
e "’*’c $7;:
Gog
A 8 cg‘?:‘*m
g N Gy rgSe
° 8 o e
& g m1‘¢q%,§’*e,
& 0,
& 3 0%,
Sy & < 9 ZRo%Y 2%
¢ g S 2 2z 29%%%
& = 8 © 3%2¢°
§ & 3 &%
¢} = 3 ° 03
I ®
3
2

Figure 2.1: Comparison of the fine grained entities of Few-NERD(left) and MultiCoNER-
2(right). The outer circle represents the fine-grained entities, while the inner circle represents

the coarse-grained ones. Few-NERD has in total 66 fine-grained entity types, while MCN-2
has only 33.

2.2 State of the Art (SOTA) methods of dataset labelling for
NER task

To our knowledge, no efforts have been made to create fine-grained multilingual named entity

recognition datasets through programmatic labelling.

Dataset Grain Type | Number of Types Training Set Size
Naamapadam [5] Coarse 3 400k (11 languages)
MultiCoNER-1 [6] Coarse 6 1.8 Million (11 languages)
MultiCoNER-2 Fine 33 Hi: 25k, En: 12k
FINER [7] Fine 94 (claimed 113) 2 Million (En)
OntoNotes [§] Fine 88 251k (En)
HAnDS [9] Fine 118 37 Million (En)
FewNERD [10] Fine 66 180k (En)

Table 2.1: Comparison of NER Datasets (not exhaustive)

2.2.1 TaLLoR [11]

This paper focuses to solve on the problem of coarse-grained entity labelling for raw

datasets.

The authors introduce a new approach TaLLoR (Tagging with Learnable Logical
Rules), that automatically learns new logical rules from unlabeled data with the help

of a small seed set of rules.

The approach consists of iterative labelling of the dataset with the given set of rules
followed by a Neural-net, which can learn new rules from this labelled data. Simply
put the new rules into the set based on some threshold performance and repeat this

step.

The approach is indeed quite ingenious and yields impressive results. However, it
is primarily effective for generating coarse labels due to the limited generalization
capabilities of the generated logical rules. These rules tend to be less effective in
generalizing for finer tags, which limits their applicability to our fine-grained labelling

task.

2.2.2 Snorkel [12]

This paper focuses on creating a development tool that can be used for getting a final

label for each data point with many labelling functions at once, even with conflicting

5

seed rules

—

entity candidates

unlabeled data

rule candidates

‘ logical rules H

apply rules & select training
instances

]—-[train & apply neural tagger]——[score and select new rules

-

I <s>Ryan lives in Dallas.</s>

[
i
iDaHas—>Location L—» <s>John moved to Dallas.</s>
|
i
\

l
1
1
i

example rule

labels.

Snorkel’s framework consists of three main stages: writing labelling functions, auto-

matically modelling their accuracies and correlations, and using the probabilistic labels

'
'
'
\

<s>George Dallas was a politician.</s>
/

selected instance examples

entity prediction examples

newly selected rule examples

Figure 2.2: Overview of TaLLoR framework

to train a discriminative model.

A key feature of Snorkel is its ability to estimate the accuracies of these noisy labels

and their correlations, facilitating the generation of probabilistic training labels.

This is a very useful framework as it can be very useful in our case where we can have

a large number of labelling functions that would be generated by LLM, and we need a

consensus between them.

after parenteral

We study a patientwho became ‘

administration for preeclampsia.

UNLABELED DATA

Document

Sentence

Span

Entity

—

External
KBs

Patterns & “cau:
dictionaries ©

2

Domain
Heuristi

o |

CONTEXT HIERARCHY

LABEL

MATRIX

J

WEAK SUPERVISION SOURCES

LABELING FUNCTION INTERFACE

 Qp——— i

SNORKEL

_l________
e

PROBABILISTIC |
TRAINING DATA |

DISCRIMINATIVE
MODEL
MODEL

Figure 2.3: Overview of Snorkel framework

2.2.3 Coarse2Fine [13]

This paper focuses on our problem of generating fine-grained labels for a dataset from

its coarse-grained labels.

» Coarse (C2F) fine-tunes language models (like GPT-2) in a label-conditioned manner,

where label surface names are added as prompts to the documents.

o The framework starts by generating pseudo-training data iteratively through the fine-
tuned language model and then training a text classifier so as to refine its weak super-

vision.

o This framework only applies to dataset containing sentences with one entity. So ba-
sically, it cannot do context mapping to any other named entity, which is a major

limitation of this method.

2.3 SOTA methods for labeling using LLM

We reviewed some works that use LLM for labelling datasets. This labelling is not for the
NER task, but it was important to understand how good, in general, LLMs are in dataset
labelling.

2.3.1 Can Large Language Models Design Accurate Label Functions? [14]

o This paper introduces a framework Datasculpt which basically can create labeling

functions through LLM prompting
o Their focus is on the sentiment analysis rather than the NER task.

o They use different types of thresholds and heuristics to filter out the bad or noisy LFs

in order to have confident predictions.

e They concluded that LLMs can perform well in designing keyword-based LFs for tasks
requiring general knowledge. However, they are less effective in designing pattern-

based LFs, and they are also less accurate in tasks requiring specific domain expertise.

2.3.2 Language Models in the Loop [15]

This paper introduces the idea of prompt-labeled functions.

, In other words,, it proposes an idea of using labelling functions that are not like

normal Python functions, but are some kind of prompt questions about the text.
e The LLM will return some output to this prompt question.

o Later, a consensus is achieved among all the outputs of these prompt questions, and

the final label is obtained.

« This paper solves the problem specifically for the spam detection task.

e I

- — J
Training Set
Subject) .
Matter Prompting Weak Supervision
Expert pmmmmmmm=m————- p——— == ———m——— - \ emmmmmmmmmemmmemm-e--- F--=o
,/ Example to be Labeled \ \‘
! i I (" Label Model) (CEndModel] |
1 1 ! |
1
| o) ‘R ren LR N |
1 ! ! i
I Pre-Trained ——)mm I—>: Label 2 —_
D 1 Language : \ |
") ¢ Label ;
Label Maps /
__
Metrics ﬁ

Expert Labeled
Development Set

Figure 2.4: Language models in the loop

2.4 Few-shot learning models in NER

We also reviewed the current SOTA in the field of few-shot NER, specifically CONTaiNER
[16]. Given its promising results on the Few-NERD dataset, it made sense to evaluate the

quality of our dataset using this model.

2.4.1 CONTaiNER [16]

This paper introduces a few-shot NER model via Contrastive Learning.

o Unlike traditional contrastive learners that optimize similarity objectives between point
embeddings, CONTaiNER optimizes distributional divergence, effectively modelling

Gaussian Embeddings.

o The model first trains on the source dataset by tuning its parameters for the divergence

loss and then fine tunes itself for the given support set.

o It then uses nearest neighbor inference to find the best matching label for a token in

query set

reduce divergence
A

W) w20 o] (o 2] ORTR] EERY [(oo =2 [= [=2

increase divergence

‘Projection Network, (f,,f)| ________ ’Projection Network, (f,,f)
i oy A soiaon t Gons LY
Representations, hj Representations,hj (
! 1
' 1
PLM , PLM ' PLM

ESREHIESIEY 1 6] [T [SRS EES RS

Barack Obama was born in 1961 Volkswagen was founded in Germany Nvidia launches RTX series GPUs

(iii) Nearest Neighbor
Inference

Source Tags: [l PER DATE Target Tags: [l ORG LOCATION

(i) Source Domain Training (ii) Target Domain Fine-tuning

Figure 2.5: Overview of CONTaiNER framework. Here, PLM stands for pre-trained lan-
guage model (BERT in this case).

2.5 Prompt Learning

Prompt learning is a technique used to guide large pre-trained language models (LLMs) to
perform specific tasks by crafting natural language or structured prompts. Instead of fine-

tuning the model’s parameters, prompt learning exploits the model’s existing knowledge

by framing the input in a way that elicits the desired output. Prompt learning can take
various forms, including manual prompt engineering, automated prompt optimisation, and

soft prompts (learnable vectors).

2.5.1 Prompt-Learning for Fine-Grained Entity Typing [1]

o The work presents a novel application of prompt-learning to the task of fine-grained en-
tity typing. It demonstrates that prompt-based methods—especially those leveraging

pretrained language models (PLMs)—can be adapted effectively to this task.

e The authors propose a simple yet effective prompt-learning pipeline that in-
cludes two key components: entity-oriented templates and verbalizers. Templates are
carefully designed sentences that embed the entity mention within a cloze-style prompt
(e.g., “[Entity] is a type of [MASK]”), enabling the PLM to predict the entity
type using masked language modeling. Verbalizers then map type labels to words or
phrases that align with the vocabulary and semantics of the PLM, facilitating accurate

predictions.

e A key contribution of the paper is its extension to the zero-shot setting, where
no labeled training data is available. To address this, the authors introduce a self-
supervised distributional optimization method that clusters the contextual rep-
resentations of entity mentions and aligns them with type representations derived from
the label space. This strategy allows the PLM to capture the semantics of fine-grained
types purely from the unlabeled input distribution, enabling meaningful predictions

without supervision.

2.5.2 OpenPrompt: An Open-source Framework for Prompt-learning [2]

o The paper introduces OpenPrompt, a unified and extensible toolkit designed to

standardise and facilitate the development of prompt-learning methods with pretrained

10

MLM Apple
Knowledge))
Probing [CLS] iPhone is produced by |[MASK]|. [SEP]
Prompt
MLM Great - = Positive
Sentiment
Classification |[CLS] | like this. It was |[(MASK]|. [SEP]
(~ 2 classes) -
Prompt ——

[CLS] What happened to his lab ?
Natural VLM » X
Language ©5 -~ * Entailment
Inference [MASK]), his lab was torn down in 1904 . [SEP]
(~3classes)

—Prompt—

[CLS] Bob Dylan, the author of "Blowing in the Wind",

won the Nobel Prize in Literature in 2016 .
Entity
Typing :Bob Dylan: is . [SEP) —
(>dBclasses) | =it Singer | | omiST
MLM Writer [~ & \THOR
Prompt Label Words. Class Sets.

Figure 2.6: MLM based learning tasks in Prompt Learning

language models (PLMS).

OpenPrompt provides a research-friendly, modular, and extensible framework
that supports a broad spectrum of prompt-learning paradigms, including cloze-style
prediction, autoregressive modeling, and sequence-to-sequence generation. The toolkit
abstracts key components in prompt-learning—such as template construction, verbal-
izer design, and PLM configuration—allowing users to mix and match modules to suit

different tasks and models.

A contribution of OpenPrompt is its support for multiple task formats and PLMs in
a unified interface. Users can rapidly deploy prompting frameworks with various com-
binations of language models (e.g., BERT, GPT, T5), task types (e.g., classification,

generation, token-level prediction), and prompting strategies.

11

PromptModel C]

Verbalizer Wrapper Class: These classes aim to
make prompt-learning align with

T legl=toguors PyTorch pipeline, and users do not need

wrapped
PLMs example to modify them.
4 input for PLMs [j
. PLM-related Class: These classes
Tem pIateEm beddi ngs Prompt support the calling and management of
T Trainer various PLMs.
PromptDataset [
Prompt-related Class: These classes are
Prom ptTokeni zer wrapped unique modules for prompt-learning,
example and they can be implemented by users.
+—— Template
Tokenizer :]
example I Dataset-related Class: These classes
support the utilities for datasets across
Dataset different NLP tasks.

Figure 2.7: Architecture of OpenPrompt

2.6 Prompt Engineering Techniques

2.6.1 Automatic Prompt Engineering [17]

 This work introduces a technique known as Automatic Prompt Engineer (APE), which

is aimed at generating and optimizing task instructions autonomously. The task of
creating instructions is framed as a language generation challenge and is approached
as a black-box optimization problem. Large language models (LLMs) are employed to

explore and assess a space of potential instruction candidates.

In the initial phase, a large language model is supplied with output examples and tasked
with producing candidate instructions for a given task. These generated instructions
serve as starting points for an optimization process. A separate model executes each
instruction, and the most effective one is selected based on quantitative performance

evaluations.

This contribution has inspired further advancements in automated prompt genera-
tion strategies, such as AutoPrompt [18], Prompt Tuning [19], and Prompt-
OIRL [20].

12

__LLMs as Inference Models ,‘\ ___LLMs as Scoring Models |

Professor Smith was given the Instruction: write the antonym of the

following instructions: <INSERT> word. <LIKELIHOOD>
Here are the Professor’s responses: Input: direct Output:
Demostration Start ﬁ Log
Scorin
Input: prove Output: disprove Propesal e Probability
Input: on Output: off i
:> write the antonym of the word. -0.26 I
@emostratlon ol / give the antonym of the word provided. -0.28 I
o !Optionaﬂ S (Ijl:i::i: otre: reverse the input. -0.86 x
. LLMs as Resampling Models |
G o ati the followi <:: to reverse the order of the letters -1.08 x
enerate a variation of the following
instruction while keeping the semantic .
meaning. (‘Sal:clllil:tres write the opposite of the word given. -0.16 *
Input: write the antonym of the word. |:>
Output: <COMPLETE> list antonyms for the given word. -0.39

Figure 2.8: A depiction of how APE works. A LLM is prompted to generate a prompt
based on sample inputs/outputs. A different LLM then scores the generated prompts on test
input/outputs, followed by selecting high-scoring prompts. A third prompt can be optionally
used to resample the generated prompts.

2.6.2 Chain of Thought Prompting [21]

 Chain-of-thought (CoT) prompting enhances a model’s ability to handle tasks requiring
multi-step reasoning by encouraging intermediate thought processes. When integrated
with few-shot examples, it often leads to improved performance on tasks that demand

logical progression before an answer is given.

« A more recent innovation in this area is known as Zero-shot CoT [22], which in-
volves appending phrases like “Let’s think step by step” to prompts in order to elicit

structured reasoning from the model without requiring any examples.

o The authors report that, in numerous complex scenarios, Zero-shot CoT can outper-

form traditional few-shot prompting approaches.

13

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

./

A: The answer is 27. x

kdo they have?

~ G

Cnswer is9.

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A:
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

P,
o

The

-/

Figure 2.9: A contrastive difference on the working of standard prompting and CoT
prompting. Note how in standard prompting, we directly get the incorrect answer, but
in CoT, thinking through intermediate help the LLM to solve the task

(a) Few-shot

@oger has 5 tennis balls. He buys 2 more cans of tenns
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

ﬁRoger has 5 tennis balls. He buys 2 more cans of ter@
balls. Each can has 3 tennis balls. How many tennis balls does

(b) Few-shot-CoT

he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The answer is 8. X

: £
(c) Zero-shot

(Output) The juggler can juggle 16 balls. Half of the balls are golf

balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are
%. So there are 8/ 2 = 4 blue golf balls. The answer is 4. //

(d) Zero-shot-CoT (Ours)

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let’s think step by step.

(Output) 8 X

(Output) There are 16 balls in total. Half of the balls are goif
balls. That means that there are 8 golf balls. Half of the golf balls
are blue. That means that there are 4 blue golf balls. v

Figure 2.10: This figure shows the Zero-CoT technique where just by adding the "Let’s
think this step-by-step” clause, we get performance better than few-shot prompting

14

2.6.3 Tree of Thought prompting

We will discuss two main kinds of work that have been done in this domain. The first one
uses some kind of algorithm to prune the nodes in the thought tree, whereas the second uses

ingeniously designed prompts to mimic the ToT technique.

o The Tree of Thoughts (ToT) methodology organizes reasoning steps as a branching
structure, where each node captures a logical segment contributing to the final solution.
This setup allows the language model to assess its own progress incrementally and

engage in structured, reflective problem-solving.

o As this area of research is still in its infancy, only two primary contributions have

emerged. One was introduced by Yao et al. [23], and the other by Long [24].

o Both techniques enhance large language models’ problem-solving abilities by enabling
them to navigate through a reasoning tree using iterative exchanges. A key distinction
lies in the search mechanism: Yao’s method utilizes search strategies like depth-first,
breadth-first, and beam search, whereas Long employs a learned "ToT Controller”
using reinforcement learning to make decisions on traversal depth and when to revisit

earlier reasoning branches.

o A separate approach by Hulbert simplifies the Tree of Thoughts concept by compressing
the evaluation of reasoning steps into a single prompt, thus retaining the core idea while

minimizing procedural complexity.

2.6.4 Graph of Thought Prompting [25]

e The Graph of Thoughts (GoT) framework introduces a non-linear reasoning paradigm
where thoughts (intermediate reasoning steps) are structured as nodes in a graph.
These thoughts are generated, evaluated, and composed asynchronously by LLMs,

enabling richer and more flexible problem-solving pipelines.

15

https://github.com/dave1010/tree-of-thought-prompting

i thought ;

0]

O_Dk
000

Y Majority vote

Q
o

(a) Input-Output (c) Chain of Thought (c) Self Consistency
Prompting (1Q) Prompting (CoT) with CoT (CoT-SC)

(d) Tree of Thoughts (ToT)

Figure 2.11: A visual depiction of the difference between standard prompting, CoT, ToT

Input 491013

(a) Propose Prompt . _ Thought Generation
(4+9=13(left101313)
Input: 491013 — TM 10-4=6(left 6913)

Possible next steps:

13-6=7 (b) Value Prompt | Thought Evaluation
Eval:aztz i(F giv;;\knrr?bers ca.;l)) (13-10)*13=3°13=39
reac sure/likely/impossible g
-— 1] — 1014:10 + 14 = 24, sure _ IM p——p{ 10 13‘ 13 3§There is rﬁoway
4+6=10 () to obtain 24 with these big
101313 X : numbers. impossible

Figure 2.12: An example to show how ToT works. The example is the famous Game of
24 where you are given 3 numbers, and you have to insert mathematical operations between
these 3 to make the number 24. The upper path depicts the thought generation,n while the
lower depicts thought evaluation.

Imagine three different experts are answering this question.
All experts will write down 1 step of their thinking,
then share it with the group.

Then all experts will go on to the next step, etc.
If any expert realises they're wrong at any point then they leave.
The question is...

Figure 2.13: An example prompt to depict the idea of Hulbert’s Tree of Thought prompting

16

e The GoT prompting pipeline operates in three stages:

1. Thought Generation: Multiple reasoning steps are generated in parallel as

possible solution fragments or perspectives.

2. Thought Evaluation: LLMs evaluate each generated thought using a quality

criterion (e.g., factuality, coherence) to select the most promising ideas.

3. Thought Composition: High-quality thoughts are merged or extended to form

new nodes in the graph, progressing toward a final answer.

o Unlike chain-of-thought prompting, GoT allows parallel exploration and revisiting of

earlier ideas, akin to how humans explore multiple approaches before converging on a

solution. This makes GoT particularly suited for tasks involving synthesis, abstraction,

and multi-step reasoning.

Basic Input- Chain-of-
Output (I0) -Thought
(CoT)
Input
Output
Thoughts: *
Unscored
- Positive
score l
- Negative
o Output
Dependencies
between thoughts
Key novelty:
m Abandon thought Lm[MW
*..Backtrack AR CED

Multiple CoTs (CoT-SC)

. Selecting
1 a chain with
nncaladlglse the best score

Tree of Thoughts (ToT)

Iﬂpllt Backuracking
from a chain

/ ¥ *%\
4 *‘.‘
:\,.

Output

Branching out

(bt_vnnd CnT-SC‘)
Generating several

lnlermedlale
thoughts are
also scored

on a given arbitrary
thought, exploring
it further, and possibly
backtracking from it

Graph of Thoughts (GoT)

[This work]

Refmlng

Input

0/&

Backtral:kmg

Aggregating
thoughts

novelty (beyond ToT):

AKgmary graph-based tln;luj Olltpllt
ations (aggregating

thoughts into a new one,
looping over a thought to
refine it)

Figure 2.14: Comparing GoT along with other prompting techniques

17

Chapter 3

Problem Statement and Methodology

3.1 Problem

We will be exploring two kinds of problem in our thesis namely: Translation with Annotation

(TrA) and Raw to Fine (R2F). These will be explained subsequently.

3.1.1 Raw to Fine (R2F)
Input

Let C denote the set of coarse-grained NER labels. The input is any sentence given as tokens
x = |21, 29, x3,...,24). Optionally, the sentence can be given a set of coarse labels ¢; € C in
the form of a list as ¢ = [¢1, g, ..., ¢;] where each ¢; denotes the coarse-grained label of the

input token, to aid the task.
[IW|, 'Erg(_'l", !ﬁi’ rg-aq, 1%1, 1m1’ IMI’ !a-l-(?ﬁ-l, lg-dq, |ﬁ-|, 'mﬁ', v |l]

Figure 3.1: Example Input of the R2F problem

18

Output

Let F denote the set of fine-grained NER labels. The output will be a list of fine-grained
NER labels in f = [f1, f2, f3, ..., fi]. Each f; € F is the fine label assigned to the token z; in
the input, which matches the category of labels in which z; falls given the list of fine labels.

If x; does not fall into any category, O is assigned to x;.
[’O” :Oa’ :Oa’ 'JO','j| 101’ :Oa’ jO,; ’O?, 70’, jO,; ’Facility’, 'O’]

Figure 3.2: Example Output of the R2F problem

3.1.2 Translation with Annotation (TrA)

This problem deals with translating a sentence from a given source language (whose la-
beled data is abundantly available) to a target language (a low-resourced language) while

maintaining a proper propagation of fine labels.

Input

Again let F denote the list of fine-grained NER, labels and let S be the set of all possible to-
kens in the source language. Let the input sentence be given as tokens = = [x1, Zo, T3, . . . ,]
in the source language i.e. V1 <i<n ,x;€S. Also let f = [f1, fo, f3,..., fu] be the list of

fine labels such that V1 <i<n , f; e F.

Output

Let T denote the set of all possible tokens in the target language. In output we expect

another sentence in the target language i.e. we expect ' = [z, 2,25, ..., 2],] such that
V1<i<m,x,eT and with that we also want f' = [fi, f5, f4,..., f},] such that ¥ 1 < i <

m , f; € F which is the list of fine labels for the list of tokens that are outputted.

19

English

the ideas were introduced by _ at the end of the nineteenth century .
Hindi

S 2 _msqﬁ%m’ffﬁ’rﬂer%mwaﬂ

Figure 3.3: Example Input/Output of the TrA problem

3.2 Challenging nature of the Problems

o Importance of Context: Fine-labelling of NER data can’t be done without under-
standing the context of the sentence, which makes the problem of fine-labelling NER
data more challenging in comparison to coarse-labelling NER data. To understand the
importance of context, take the example of a person who is an Actor, Director, and
Producer in cinema. While assigning a fine-grained label to the person, the context of

the sentence in question has to be analysed to provide the label.

e Low resources for Indic Languages: Indic languages don’t have a lot of training
data to train a model accurately to cater to the needs of the language, so finding a
coarse-labelled dataset for the above languages is a difficult task. Let alone a fine-

labelled one.

3.3 Proposed Methodology

3.3.1 R2F: Raw to Fine

The methodology is composed of the below steps.

1. Prompt preparation

(a) Example sentence selection

20

feot Trgar € &1 fAde | WYEH &R person A 5T T |

(a): Coarse-labelling of entity to person

T fAeaT YT &6 910 UREH 3R actor I |

(b): Fine-labelling of same entity to actor

o1 ITedT 8 BT AdeM WReM 3T&R director fd5aT T |

(c): Fine-labelling of same entity to director

Figure 3.4: Comparing the complexity of coarse-labelling vs. fine-labelling

(b) Feeding the unlabelled sentence to the prompt

2. Feeding the unlabelled sentence through the prompt to the long context large language

model for labelling.

3. Creating a training dataset from the labels generated by the long context large language

model

4. Fine tuning a Pre-trained language model (XLM-RoBERTa [33] in this case) on

the training dataset to make the final model.

To validate this model, we compare the F1-score of the final model obtained from above
with the model trained on the original train MCN2 dataset, tested on the MCN2 test set as

shown in here

21

Table 3.1: Comparison of Training Dataset Sizes for Indic Languages and English in Coarse
and Fine-grained NER Tasks

Language | Coarse-grained Dataset | Tokens | Fine-grained Dataset | Tokens
English CoNLL-2003 [26] 300K | OntoNotes 5.0 [27] 1.5M
MultiCoNER v1 [2§] 2.2M
MultiCoNER v2 [29] 2.3M
Hindi AT4Bharat NER [30] 350K | WikiNER [31] 43K
MultiCoNER v1 [28] 200K
MultiCoNER v2 [29] 210K
Tamil Al4Bharat NER [30] 310K | WikiNER [31] 40K
Bengali L3Cube-Bengali [32] 180K | WikiNER ([31] 36K
Marathi L3Cube-Marathi [32] 150K | Not Available -
Malayalam | Al4Bharat NER [30] 200K | Not Available -
Kannada AI4Bharat NER [30] 220K | Not Available -

LLM-labelled
MCN2 Language

Original MCN2
Language

Fine tuning XLM-
RoBERTa

Fine tuning XLM-

RoBERTa

Figure 3.5: R2F: Comparing F1 methodology

Prompt Preparation

The prompt preparation consisted of the following parts:

e Instruction about the task

o Giving examples for in-context learning

« Listing out the sentences to be labelled

Comparing F1-scores
on Test set of
MCN2 Language

Each prompt follows this general rubric, and the prompts differ in the way the instruction

is provided, and the number of sentences that are given to be labelled at a time.

22

~N o oA w

o

10
11
12

13
14
15
16
17
18
19

20

21

117
118

119

120

121

122

123

124

125

I want to initialise this prompt for fine labelling of sentences task. The task would be as
follows, you will be given a sentence as a list of tokens where each token is a word.

You just need to output the list of fine labels (size of this list would be same as that of
token list) based on the data given. I am also going to explain the hierarchy among these
coarse and fine labels two below for your help:

Location (LOC) : Facility, OtherLOC, HumanSettlement, Station

Creative Work (CW) : VisualWork, MusicalWork, WrittenWork, ArtWork, Software

Group (GRP) : MusicalGRP, PublicCORP, PrivateCORP, AerospaceManufacturerSportsGRP,
CarManufacturer, ORG

Person (PER) : Scientist, Artist, Athlete, Politician, Cleric, SportsManagerOtherPER
Product (PROD) : Clothing, Vehicle, Food, Drink, OtherPROD

Medical (MED) : Medication/Vaccine, MedicalProcedure, AnatomicalStructureSymptom, Disease

The fine label can be one among the above or it will be 'O' if the token doesn't belong to
any of the above categories.

Just return the labels for the tokens in the sentence. Label only the proper nouns.
DO NOT OUTPUT ANYTHING CONVERSATION OR CONFIRMATION, JUST OUTPUT THE LISTS.
DON'T EVEN OUTPUT " AT THE START AND END OF THE LIST.

Examples:

Sentence: ['st', ‘'sfgesfer’, 'wdws', '®', 'gg', 'w', 'wf', W', 'Ts', 'Werfe‘ra‘f',|

lagll |g@@z|]

Fine Labels: ['AnatomicalStructure', ‘o', 'o0', ‘o', 'o0', 'o', 'o', 'o', ‘o', '0', '0', '0'l]

(a): Instructing LLM about the task

Unlabelled Sentences:

Sentence: ['fwrer', '#', 'f&', 'sg@&r', 'der', 'JywEw', 'I§', 'ng', 'qAee’, 'wE', ‘WY,
‘fYdqmar', ‘g, 's§®', 'ser', 'fUar', 've', 'foe’, 'w', 'fAe, '@, 'wes', 'flEm,
'$', 'fag', 'umer', 'ed', &, 'waer', 'wd', 'E1']

Sentence: ['3®', '®laww,', 'sEmEr’', '®', ‘"eARr', ‘mWr', 'un'l

Sentence: ['Jafgf', 'F', 'Sg', '@, ‘N, 'wHA', 'S, U, 'WEIRS,

'R®', 'IyAMRE, ', ‘Tt

Sentence: ['¥g', 'S@Reg', '&', ', 'dwr', 'FH, 'um', 'g1']

Sentence: ['war', '®', 'fer', '‘wpa', A, 'ws', 'fee', 'fm, ‘¥, ‘w9, '§,
‘A, IR, R, 'efe, ‘IR, ‘s, 'Telt, 'Ws', 'w, ‘s,

W, tyuErt, 'wfReRt, ‘TR, 'wr', 'Saen', 'fEEmt]

Sentence: ['=@gl", 'S, '®WR®', '®', 'ws', 'dAW', 'S, 'WH', 'wga', 'fGE,
mrt, Ctert, 'foemt, 'z, ‘fwoft, '@, e, ', 'IWe', ‘U, 'ISHAR',
‘fiefaa®, 'aFg!, ‘et

Sentence: ['eeg3', 'd', 'wed', 'dw', 'IEA', 'O, 'I@E, '@msat, '@,
e,), 'dY, 'gmEr', 'dnt

Sentence: ['sA®r', ‘ugarf@r', ‘A, 'wig', 'k, ‘@AY, 'wEt, ‘¥,

‘@WdAar', ‘%', 'ar', '®', 'I9AR', 'mm', ‘s, ‘s, 'sed', 'w', 'fav’,

'vw', 'Hg', 'f&m']

(b): Unlabelled sentences given to the LLM for labelling

Figure 3.6: An example prompt for R2F

23

(for example ['0', 'O, '0', '0', 'O', '0', '0", 'O,

Labelled Sentence '
'0', '0', 'Facility’, '0")

Figure 3.7: R2F visualized

Source

Long Context

~ Labelled |
Dataset

Fine tuning
XLM-RoBERTa

Final Model

Figure 3.8: R2F Pipeline visualized

3.3.2 TrA: Translation with annotation
The methodology consists of the following steps in order:
1. Prompt generation (Refer to section 3.3.2).
2. Finalize the query using generated prompt and the query sentence.
3. Use the large context LLM to generate the output for the given query.

4. Cleaning of the generated output and selecting good sentences.

24

5. Fine tuning a Pre-trained language model (XLM-RoBERTa [33] in this case) on

the training dataset to make the final model.

6. Use this model for testing on the original MultiCoNER-2 test data split and comparing

the f1’s

English

he is the twin brother of minnesota vikings SportsGRP linebacker _

TrA Pipeline

Hindi

ag AT a8 sportsGrp & dTEAdGN _iﬂ@a‘rm‘a‘gl

Figure 3.9: An example of what TrA is doing

25

MultiCoNER? Hindi (Training)

XLM RoBERTa
Dataset
Start
Test on MCN2
Hindi (Test) and
compare Fl's
MtiCoNER2 English Gemini Translated dataset XLM RoBERTa

(Training) Dataset

Figure 3.10: TrA pipeline visualised

Prompt generation

Prompt design have a significant impact on the level of generated output. This was readily
seen in the results as well (Refer to section ??). Here we will just be giving a template of a
vanilla prompt which follows the prompt guidelines given here

A vanilla prompt template is shown at figure 3.11

26

https://platform.openai.com/docs/guides/prompt-engineering

You are a proffessional machine translator given the following task: you will be given a sentence with each token labelled with one of the following labels: /

Facility, OtherLOC, HumanSettlement, Station

VisualWork, MusicalWork, WrittenWork, ArtWork, Software

MusicalGRP, PublicCORP, PrivateCORP, AerospaceManufacturer, SportsGRP, CarManufacturer, ORG
Scientist, Artist, Athlete, Politician, Cleric, SportsManager, OtherPER

Clothing, Vehicle, Food, Drink, OtherPROD

Medication/vaccine, MedicalProcedure, AnatomicalStructure, Symptom, Disease

The label will be '0' if the token doesn't match any of the above labels.

You need to translate the given Hindi sentence to English and then also propogate the labels based on the translation.

Also note the following points before you begin

- DO NOT QUTPUT ANYTHING OTHER THAN THE TRANSLATED SENTENCE AND THE LABELS (even the text that you understood the prompt)

THE INPUT MAY CONTAIN ERRORS IN THE LABELS. YOU NEED

- FOLLOW THE SAME EXACT FORMAT AS THE INPUT SENTENCE IS GIVEN.

- IF THERE ARE MULTIPLE TRANSLATIONS POSSIBLE FOR A GIVEN WORD, CHOOSE THE ONE THAT IS GIVEN IN THE EXAMPLES. OTHERWISE, YOU CAN CHOOSE THE MOST POPULAR ONE

Now I will give you examples for each label. You will be given the Hindi part and you have to output the English one.

Input
the 0
village 0
is 0
located 0
just 0
west 0
of 0

ivano-frankivsk Station
international Station
airport Station

0

*Qutputx

LiEs 0
saA-$fFad Station
FRME Station
g Station

3@ Station

F 0

3% 0

ufeem 0

%o

@ o
]

I 0

ALWAYS TRANSLITERATE PROPER NOUNS.

Figure 3.11: An example of prompt for TrA

3.3.3 Use of Gemini for Long-Context Modeling

To effectively model long-context dependencies in bilingual fine-grained Named Entity Recog-
nition (NER), we utilized Gemini, a state-of-the-art long-context language model developed
by Google DeepMind. Gemini was chosen due to its ability to handle extended sequences
of text while preserving contextual coherence, which is critical for hierarchical and semanti-

cally nuanced labeling tasks. Its long-context capabilities arise from several key architectural

features:

27

TO CORRECT THEM. DO THIS ONLY WHEN YOU ARE COMPLETELY SURE THAT THE LABEL IS WRONG.

‘Warnings

P

Y
-

AN

Context dump (Examples)

Goal

o Segment-aware attention: Gemini uses attention mechanisms that explicitly ac-
count for token positions across long documents by segmenting the input and condi-

tioning on segment-level memory representations.

e Memory-efficient attention variants: Techniques such as sparse attention and
local-global token mixing allow Gemini to scale to longer sequences without quadratic

memory overhead.

e Chunked context representation: The model processes large inputs in context
chunks and fuses their representations, enabling it to maintain semantic consistency

over long ranges.

+ Retrieval-augmented generation (RAG): Gemini can optionally retrieve relevant
content from external memory or documents to support inference, especially useful

when key information lies far apart in text.

o Position interpolation and extended rotary embeddings: These allow the
model to generalize positional understanding beyond the original training context win-

dow.

Furthermore, Gemini offers robust multilingual understanding, which aligns well with

the bilingual nature of our dataset comprising aligned English-Hindi sentences.

28

Chapter 4

Experiments & Results

Prior to detailing the experimental procedures, we first define the computational environment
in which all experiments were conducted.

All experiments employ Gemini, a long-context large language model developed by
Google DeepMind. This model was selected due to its favorable cost-performance ratio and
the demonstrated efficacy reported in recent benchmarks. Experiments were executed via
the publicly available (free-tier) API, which imposes rate limitations. Consequently, the time
required for dataset annotation—impacted by these rate limits—is a non-negligible factor
and is explicitly reported in the context of each experiment.

Secondly, all labeled and unlabeled datasets are derived from the MultiCoNER 2
dataset collection (for details, see Section 2.1.2). The unlabeled datasets were created by
removing entity labels systematically from corresponding labeled instances. In addition, to
maintain the integrity of the evaluation, no test data was ever seen by the Gemini model
during any phase of the process, thus ensuring that the test set remained strictly unseen
during training and inference phases.

Also as for the Pre-Trained Model for testing the generated dataset we used XLM-
RoBERTa (Large)|33] for our purposes.

For the Translation with Annotation (TrA) problem, the source language is English while

29

https://deepmind.google/technologies/gemini/

the target language can be Hindi or Bangla. Both of them are supported by Gemini and
their datasets are available in MultiCoNER-2.
For the R2F Problem, the unlabelled sentences are either in Hindi or Bangla, and selected

from the train set of the MultiCONER-II dataset.

4.1 Raw to Fine (R2F)

For the experiments, the example sentences that were provided to aid the LLM for in-context

learning weren’t changed throughout the experiments. These examples are listed below.

4.1.1 Experiment-0: Qualitative Testing of the LLM

LLM Used: Gemini 1.5 Flash

We started by qualitative analysis of the outputs by the LLM to see whether the LLM
can be used to fine-label named entities in Indic languages.

In this experiment, there is one instruction prompt fig:r2f-exp2-instruction-prompt, cou-
pled with examples for in-context learning of the LLM and 10 unlabelled sentences for

labelling.

e Sub experiment (A): Biased Prompting Setting: In this sub-experiment, the
examples and the unlabelled sentences were chosen so that they shared the same entity
type in the training dataset of MCN2. Implies 33 sentences of one entity type given
as examples, and 10 sentences given for labelling, which were labelled as the same

entity type as the 33 example sentences in the training dataset.

« Sub experiment (B): Zero-Shot Prompting Setting: In this sub-experiment,
the examples and the unlabelled sentences were chosen so that they did not share the
entity type in the training dataset of MCN2. Implies 33 sentences of 32 entity types
given as examples, and 10 sentences given for labelling, which were labelled as the

entity type not in the 33 example sentences in the training dataset.

30

e Sub experiment (C): Randomly generated Prompts Setting: In this sub-
experiment, the examples and the unlabelled sentences were chosen randomly from

the training dataset of MCN2.

Results

The qualitative analysis yielded positive results, as many sentences were correctly labelled
in the first and last sub-experiments. Regarding correctly assigning labels, sub-experiment
A produced the best results, followed by sub-experiment C, and then sub-experiment B.

Sub-experiment B was particularly interesting, as the LLM had no examples to learn
from in the prompt, and hence assigned many of the named entities the label ’O’; instead
of their true fine-label, clearly showing the importance of examples given in the
prompt.

Since the initial results were promising, further experiments were done to study the

labelling capabilities of the LLM.

Findings

e One-off errors: The LLM labels the surrounding corpus of the named entity many

times, leading to one-off errors.

o Not using the context: The LLM many times, doesn’t use the context of the

sentence, but rather it’s own pre-trained knowledge to fine-label an entity.

Sentence 111

Sentence: TF HEY ITTHT BT HIT H ATAT ATFABT T oo ooo T JAfEH W gEATER 5T TT 1

Training Labels Predicted Labels

TE BHYE Software FTTEIDI bl HIT A ATl ATTIBT T Goo ooo F EF WERER fFU TS| TH Software BHI ATTEIPT b1 HIT e ATA] ATIRT TR 4oo ooo H e TX EEATSR kT MY 1

Figure 4.1: R2F: Experiment-0 One Off Errors: Instead of labelling %&gs% , the LLM
labels the token just before it as Software

31

Sentence 84

Sentence: 3TTSTHT Y&l § 3 <<l T Tegg T &M

Training Labels Predicted Labels

HEMT Ppolitician T4 A 3HId I AW ATl ST Politician 4 H 59 <4 &1 T8 T 2T

Figure 4.2: R2F: Experiment-0 Not using context: From the sentence it isn’t clear that
ST is a Politician, but the LLM uses it’s pre-trained knowledge to label that.

4.1.2 Experiment-1: Finding the acceptable number of sentences that can be

labelled in one prompt

LLM Used: Gemini 1.5 Flash
In the second experiment, instead of a qualitative analysis of the LLM output, we tried
to find out the practicality of the solution, and started with finding the number of sentences

that can be labelled in one prompt without the LLM going into hallucination.

Findings
o Hallucination: The LLM doesn’t always follow the prompt as asked to. For example

in the prompt it is clearly mentioned not to output “, still the LLM outputs it.

e Not using the context: The LLM many times, doesn’t use the context of the
sentence, but rather it’s own pre-trained knowledge to fine-label an entity. For example,

the LLM labelled a coach as sportsperson, overlooking the context of the sentence.

o Thirty unlabelled sentences:

— Setting: In this case, in the prompt 33 examples were given, each example
covering one fine-grained label of the MultiCONER-IT (MCN2) dataset, and along

with these examples, 30 sentences were given to be labelled.

32

Result: The LLM clearly hallucinated, giving hardcoded labelling functions

for every unlabelled sentence given.

e Fifteen unlabelled sentences:

e Ten

Setting: In this case, in the prompt 33 examples were given, each example
covering one fine-grained label of the MultiCONER-IT (MCN2) dataset, and along

with these examples, 15 sentences were given to be labelled.

Result: The LLM clearly hallucinated, giving hardcoded labelling functions
for most of the unlabelled sentence given, this is a slight reduction from the

prompt, where 30 examples were given.
unlabelled sentences:

Setting: In this case, in the prompt 33 examples were given, each example
covering one fine-grained label of the MultiCONER-IT (MCN2) dataset, and along

with these examples, 10 sentences were given to be labelled.

Result: The LLM did not hallucinate for half of the sentences, and gave the
output in the desired form as required for analysis. So, around 4,600 sentences
were labelled according to the specification provided in the prompt as compared
to the 9,200 sentences in total. The resulting F1-score when trained and tested
came out to be 38.54, note that the baseline score of the MCN2 original train

dataset is 68.05.

33

~N o u s w

(o]

10
11
12

13
14
15
16
17

10
11

I want to initialise this prompt for fine labelling of sentences task. The task would be as
follows, you will be given a sentence as a list of tokens where each token is a word.

You just need to output the list of fine labels (size of this list would be same as that of
token list) based on the data given. I am also going to explain the hierarchy among these
coarse and fine labels two below for your help:

Location (LOC) : Facility, OtherLOC, HumanSettlement, Station

Creative Work (CW) : VisualWork, MusicalWork, WrittenWork, ArtWork, Software

Group (GRP) : MusicalGRP, PublicCORP, PrivateCORP, AerospaceManufacturerSportsGRP,
CarManufacturer, ORG

Person (PER) : Scientist, Artist, Athlete, Politician, Cleric, SportsManagerOtherPER
Product (PROD) : Clothing, Vehicle, Food, Drink, OtherPROD

Medical (MED) : Medication/Vaccine, MedicalProcedure, AnatomicalStructureSymptom, Disease

The fine label can be one among the above or it will be '0' if the token doesn't belong to
any of the above categories.

Just return the labels for the tokens in the sentence. Label only the proper nouns.
DO NOT OUTPUT ANYTHING CONVERSATION OR CONFIRMATION, JUST OUTPUT THE LISTS.
DON'T EVEN OUTPUT *°° AT THE START AND END OF THE LIST.

Figure 4.3: R2F: Experiment-1 Instruction Prompt

Sentence: JTHYT & d& 98 I H & (oY FATRS W RYHiART &1 T

Ground truth labels: ['0O', 'O', '0O', '0O', 'O', 'O', '0O', 'O', 'HumanSettlement', '0', '0', '0', '0']

Labels: labels = ['0'] * len(sentence)

Figure 4.4: R2F: LLMs returning Hardcoded Labelling Functions

34

F1 Score by Category

1.0

0.8

0.6

p

Q

]

u

—

w

0.4

0.2

0.0 i e 1 B 1 e 1 1 1 1 =%] B 1 1 =m 1 1 1 =Em o111

: oY ¥ f U s v D oew X >=T ¥ U U o x [S - 4 c oot o s C U X N
E‘isggﬂtcmct‘ogscxsgomgmLL.EExg‘ogcgs
S o t = 5 & = ® ¢ = O "IN o e g o 9 8 € [G] =
S0 =24 £ 0SS 0gsgow ET Y =2 t e X 22U U0 g s 3@ wat s =
EoETEgPs 23" 5Eges 2t ELorEelLBRELRE
& 5 < 8 T O E o2& O S5 £ ¢ 5% 3@ K ¢ = = =
I un = E = v = o 0 £ > 5 VYV »nw g I n B
S5 £ A% s 2 3 o] x < w g > =5
£ g L 2 ® S = = = 5 =
= = @
3 E P E T 2 &
2 (8] s 2T
a ®© £ = o
w C =
g‘i
<

Category

Figure 4.5: R2F: Experiment-1 F1 Score by category

4.1.3 Experiment-2: Fine-tuning LLM

LLM Used: Gemini 1.5 Flash

o Setting: We fine-tuned the above LLM to improve the results of experiment 1.
500 sentences were randomly picked for fine-tuning the LLM. In this case, in the
prompt 33 examples were given, each example covering one fine-grained label of the
MultiCONER-IT (MCN2) dataset, and along with these examples, 10 sentences were

given to be labelled.

e Results: The LLM did not hallucinate for over half of the sentences, and gave
the output in the desired form as required for analysis. So, around 5,000 sentences

were labelled according to the specification provided in the prompt as compared to the

35

9,200 sentences in total. The resulting F1-score when trained and tested came out

to be 43.62, note that the baseline score of the MCN2 original train dataset is 68.05.

Table 4.1: Machine Learning Training Parameters

Term Definition Value Used

Epochs A full training pass over the entire 5
training set such that each exam-
ple has been processed once.

Batch size The set of examples used in one 16
training iteration. The batch size
determines the number of exam-
ples in a batch.

Learning rate A floating-point number that tells 0.0002
the algorithm how strongly to
adjust the model parameters on
each iteration.

Learning rate The rate multiplier modifies the 1.0

multiplier model’s original learning rate.

FHINER-1 2 [Delete tuned model G= Get APl key Studio

Tuned model results

Tuning details
FHIiNER-1
Model ID: tunedModels/fhiner1-s5e2cy1qOlam
Base model: Gemini 1.5 Flash 001 Tuning Total training time: 21h 14m Tuned examples: 500 examples
Epochs: 5 Batch size: 16 Learning rate: 0.0002
Loss / Epochs (O

70

60

50

40

30

20
10

o
00 05 10 15 20 25 30 35 40 45 50

Use your tuned model

m @ Add APl access [Learn more

Figure 4.6: R2F: Experiment-2 Fine Tuning LLM

36

4.1.4 Experiment-3: Changing the Model

LLM Used: Gemini 2.0 Flash

o Setting: In this experiment, instead of Gemini-1.5 Flash, the Gemini 2.0 Flash
model was used, with the prompt having 33 examples, each example covering one fine-
grained label of the MultiCONER-IT (MCN2) dataset, and along with these examples,

10 sentences were given to be labelled.

e Result: The LLM did not hallucinate for more half of the sentences, and gave the
output in the desired form as required for analysis. The number of sentences at hand
for training was more than that in experiment 2. The resulting F1-score when trained
and tested came out to be 47.07. Note that the baseline score of the MCN2 original

train dataset is 68.05.

F1 Scores for Different Categories

0.7¢
0.6
0.5
5
S04
wv
—
w
03
0.2
0.1f
0.0 I IS B D NS N RN DU BN RUR U BUR BN NN WY e W N SR S S R
' 2 a DY 9 Y U >k ® VU T O Y X Cou X c x i X ¥ o a8y
s g5 eS8 SEEEsvEESEEE855a8¢8¢8¢%
28 o < 2 2 G T 3 fe ot ecs 8885858828688 38%¢%
E 9 £ 20 09 £8TL£ L U gam Y= a g - = = U
& £ c ¥ &35 P g o G-EEE":E“%C'ﬂm“’my%
= o [} 2 5 2 & 3 =] I 8 fSsgc-E g8 EEs s H 2
g2 a “"m: = e) = w nw S £ I go> r
R T © c & a 3 S £ 5 £ b= £
2 T m mog = & 1=
= = s O = = o
e E B o5 T a
S S 5 5 & o o
S = O v < o
T T 9 -9
c = @
< e
Q
<
Category

Figure 4.7: R2F: Experiment-3 F1 Score by category

37

4.1.5 Experiment-4: Better Instruction Prompts

LLM Used: Gemini 2.0 Flash

o Setting: In this experiment, the instruction prompt was changed to explain the LLM
terms related to Natural Language Processing. It was also explained what each fine
label meant. This experiment was done to find out the LLM’s capability to learn from
the prompt. Also the number of sentences to be labelled in one prompt was reduced

to one.

e Results: Better prompt gave better results as the F'1 score jumped to 63.71, compared

to the baseline of 68.05.

J## Fine-Grained Named Entity Labeling Prompt
You will be given a xxsentence as a list of tokensxx, where each token is a word. Your task is to return a list of *xfine-grained en

1
2
3
4
5 The size of the output list must be xxthe same as the input token listkk. If a token belongs to a specific entity category, assign i
6
7 ### Definitions

8

9 #i#t## Proper Noun
10 A xkproper nounkxx is the specific name of a person, place, organization, brand, or unique entity. It is capitalized in languages tha

12 ##t## Common Noun
13 A skcommon nounxk is a general term for people, places, objects, or concepts. It does not refer to a specific entity and is often us

14

15 -

16

17 ### Label Hierarchy and Definitions

18

19 Each fine-grained label belongs to one of the following *kcoarse categories#k:

20

21 #### Location (LOC)

22 — xkFacilitysx - A physical structure built for a specific purpose, such as a building, airport, or stadium.
23 — *k0therLOCx* - A geographical or physical feature that is not a human settlement, such as a river, mountain, or desert.
24 — skHumanSettlementxx - A populated place where people live, such as a city, town, or village.

25 — %kStationkx - A transportation hub such as a bus station, train station, or metro stop.

26

27 #### Creative Work (CW)

28 — skVisualWorksx -» A creative work that is primarily visual in nature, such as a movie, TV show, or painting.
29 — skMusicalWorkkx -» A musical composition, album, or song.

30 — skWrittenWorkx - A book, article, poem, or other literary work.

31 — skArtWorksx -» A piece of fine art, including sculptures and paintings.

32 - xxSoftwarexk -» A named software program, application, or operating system.

33

Figure 4.8: R2F: Experiment-4 Instruction Prompt

4.1.6 Experiment-5: LLM Voting Algorithm

The LLM Voting Algorithm leverages multiple prompts to the same LLM for the same

sentence, collects the outputs, and uses majority voting to determine the final label for each

38

token. The key intuition is that consistent outputs across multiple generations are more

likely to be reliable. The various steps in this method are described below.

1. Prompting: For a given input sentence, the LLM is queried three times using the

same prompt template to obtain token-level labels.

2. Label Collection: Each of the three LLM responses is parsed to extract a sequence

of token-label pairs.

3. Voting Mechanism: For each token:

e The three predicted labels are collected.

o A majority vote is taken. The label that appears most frequently among the three

predictions is selected as the final label.

e In case of a tie, i.e., three different labels, any one of the labels is selected at

random.

4. Output Generation: The final labelled sequence, consisting of majority-voted labels,

is produced and returned.

This method, which requires three times more API calls, and is slower compared to

previous methods, has its own advantages outlined below.

« Noise Reduction: Smooths out random outputs and inconsistencies in LLM predic-

tions.

e Model-Agnostic: Can be applied to any LLM without the need for fine-tuning.

Results: This method proved to be an improvement over the last experiment, and

further pushed the F1l-score to 65.19 compared to the baseline of 68.05.

39

Token | LLM-1 Label | LLM-2 Label | LLM-3 Label | Final Label
e SportsManager | SportsManager | SportsPerson | SportsManager
GCiczrd Clothing Clothing Clothing Clothing
3T Artist Artist Scientist Artist

Table 4.2: Example of majority voting across LLM outputs

Table 4.3: R2F: Model Performance Comparison (F1 Scores)

Experiment Description F1 Score
Experiment-1 Ten unlabelled sentences in one 38.54
prompt given to Gemini 1.5
Flash
Experiment-2 Fine-tuned Gemini 1.5 Flash 43.62
Experiment-3 Ten unlabelled sentences in one 47.07
prompt given to Gemini 2.0
Flash
Experiment-4 Better Instruction Prompts 63.71
Experiment-5 LLM Voting 65.19
Baseline Baseline given by MCN2 authors 68.05

4.2 Translation with Annotation (TrA)

Translation with annotation is a problem interesting in it’s own right. Here we don’t need
just the translation of a given sentence but we also need the LLM to propagate the given

labels correctly in the target language thus thereby testing both the translation as well as

the reasoning capabilities of the Large Language model.

For the experiments, the example sentences that were provided to aid the LLM for in-

context learning weren’t changed throughout the experiments. These examples are listed in

the appendix.

4.2.1 Experiment 0: Qualitative Analysis of TrA

This experiment was aimed as a Proof of Concept for the problem statement that we set up.

The LLM was manually prompted and the results were qualitatively understood.

40

The prompt were of two kinds:
o Prompt 1: Manually labeled examples will have only one fine label per sentence.

o Prompt 2: Manually labeled examples can have multiple fine labels per sentence.

The prompt size was around 5204+ Number of sentences to be labeled x Avg. token size

per sentence. Gemini claims to have a context size of 1 million tokens and in the worst case

we were still utilizing 0.01% of the maximum context length

English
he is the son of the founders of the soft drink _ .
Hindi

I8 9T 3 _aiawqas‘rasa%‘él

English
engine sheds were provided at major stations and on some branches including at _ and _
Hindi

Figure 4.9: Gemini was able to translate as well as label single-label English sentences with
great precision no matter how long or small these sentences were.

41

English

this campaign was launched in 2014 by | aamir khan Artist _and _
Hindi

T A 2014 ¥ | AR EH Artist 3 _mgga%mwwl

English

here they offer the leader (called a mayordomo) _ and -to invite him to the ceremonies .
Hindi

i A Yt (B S et ot 2) _31‘\? -mwmﬁmﬁmma

Figure 4.10: Gemini was able to translate multi fine label sentences as well without any
difficulties.

The sentences as well as labels in the MultiCoNER-2 dataset were given in the form of
lists. The first list consists of tokens and the second list (of the same size of the first one)
contains fine labels for each of the token in the sentence list. So a natural way was to use
in-context few shot prompt learning with input sentence and labels given in the form of lists.

This bring us to our first experiment.

4.2.2 Experiment 1: Vanilla prompt

LLM Used: Gemini 1.5 flash

As explained above the first prompt consists of input sentences and labels in the form of
lists and in output we expect the same list-type format i.e. two lists one for the sentence in
the target language (Hindi for this experiment) and another the fine label list that match
the size of the outputted sentence list.

The prompt also contains few shot examples for each of the fine label. We limited
ourselves to 1 example per fine label. So in the prompt there were in total of 33 examples
of manually labeled sentences. These sentences were selected on random basis from the

English part of the MultiCoNER-2 dataset and then were manually translated and labeled.

42

The prompt is shown in figure 4.11

I want to iﬁitialise this prompt for fine labelling of sentences task with translation. The task would be as follows you will be given a sentence as a list of
tokens where each token is a word. You will also be given a list of fine labels (of same size as that of tokens list).

Here each fine label will be one among the following:

Facility, OtherLOC, HumanSettlement, Station

VisualWork, MusicalWork, WrittenWork, ArtWork, Software

MusicalGRP, PublicCORP, PrivateCORP, AerospaceManufacturer, SportsGRP, CarManufacturer, ORG

Scientist, Artist, Athlete, Politician, Cleric, SportsManager, OtherPER

Clothing, Vehicle, Food, Drink, OtherPROD

Medication/Vaccine, MedicalProcedure, AnatomicalStructure, Symptom, Disease

You need to translate the given English sentence to Hindi and then also propogate the fine labels based on the translation.
The fine label can be one among the above or it will be '0' if the token doesn't match any of the above fine labels.

Also note the following points before you begin

- The output of the generated fine label list should be exactly same as to the generated token list

- Each token in the output list should correspond to a word or punctuation and should not be a group of words and/or punctuations
Now I will give you examples for each fine label. You will be given the English part and you have to output the Hindi one.
Fine Label: Station

*English#

Tokens: ['the', 'village', 'is', 'located', 'just', 'west', 'of', 'ivano-frankivsk', 'international', 'airport', '.']
FineLabels: ['0O', 'O', 'O', 'O', 'O', 'O', 'O', 'Station', 'Station', 'Station', '0']

#Hindix

Tokens: ['ma', ‘gamr-Hfees’, 'dwisw, ‘', aw@r, &, S, ofEm, W, fem, 'R,]

FineLabels: ['0', 'Station', 'Station', 'Station', 'Station', '0', '0', '0', '0', '0', '0', '0']

Figure 4.11: The vanilla prompt used in TrA

The model that we used for this experiment was Gemini Flash 1.5. It had a rate limit
of 1500 requests per day. For conducting the experiments for 16,800 English sentences, it
took around 19 hours after using multiple API keys.

The obtained translations appeared to be decent (see example in figure 4.12) which can
be credited to the vast amount of training data of Google Translate that Gemini would be
trained on. Gemini seem to maintain the overall context and grammar of the query sentence.
But there was a problem in propagation of the labels because of a inherent problem in this
vanilla prompt; This prompt relies on the assertion that the LLM would output token and
fine label list of same length in the target language and this can be a problem. If the
outputted token and label list is not of the same length, then there is no way to fix this
alignment through some pragmatic way and we have to eventually ignore those sentences.

It turned out that out of the 16,800 sentences that we gave to Gemini, only 8700 had

same length of the outputted token and label list. Even among these 8700, there is no

43

guarantee that there are no internal alignment issues i.e. label boundaries being shifted and
are not properly aligned (see example in figure 4.13)

Results: The obtained F'1-score from fine-tuning a PLM in the generated data set was
32.23 while the same was 68.05 for the original MultiCoNER-2 dataset. This is a huge
difference which majorly stems from the problem of having most of the sentences removed

out. This gives rise to the next experiment.

English

the ideas were introduced by _ at the end of the nineteenth century .
Hindi

I Ty P 3 A _maﬁaﬁzﬁ‘rﬂerﬁmwm [

English

_fictional character in water margin

Hindi

PR aanen | S w1
Figure 4.12: The first example shows that Gemini is not just translating the sentence word
by word but also taking into context the whole sentence before translating. In the second

example we can see that it is able to label tokens that aren’t even labeled in the original
sentence

4.2.3 Experiment 2: Chained output prompting

LLM Used: Gemini 2.0 flash

The shortcomings of last style of prompting was clear. The LLM was not able to remem-
ber how many label it needs to output and at what positions are the named entities. The
problem clearly lies in dealing with list style of input/output operations. So we changed the
prompt so that input sentence is given in multiple lines where each line would contain only
two words the first one is the token and the second is it’s fine label (see figure 4.15). The

output is also expected in the same style.

44

English
it was described by _ in 1935 .
Hindi

9T quiq Ueqe ARk® _ﬁﬁm:narrl

English

the role of coroner for the inquests was transferred to _ .
Hindi

Figure 4.13: Example 1 depicts the internal alignment issues where the fine label tokens
are shifted by 2 steps. Similar thing has happened in example 2 too.

This clearly removes any assertion to be maintained by the LLM because now whenever
LLM will output a token it must also output its corresponding label. Although the trans-
lation ability will take a toll because of this but it’s still manageable (see example in figure
4.14). Also for this experiment we used Gemini Flash 2.0 which had a rate limit of 2000
requests per day and it nearly took 18 hours to perform the experiment.

Results: The Fl-score jumped significantly from 32.23 in the last experiment to 56.15
in this experiment. The baseline is still 68.05. Hence, we were successfully able to mitigate

the shortcomings of the last experiment. Now we will try to improve on this.

4.2.4 Experiment 3: Self-Consistent Prompting

LLM Used: Gemini 2.0 flash

The major learning from the last experiment is that due to linear nature of LLMs(generating
word by word), it becomes difficult for the LLM to output good translations when it also
has to output labels in between them. To solve this we will be using a second LLM in series.
The sole purpose of this LLM is to check on the generated output of the first LLM and

output the final sentence. Also we made sure that this time instead of passing all the query

45

English

Hindi

English

names in italic are space travelers who have left _ .
Hindi

a————— 00909

Figure 4.14: Translation challenges in COP: First example shows an instance where the
LLM in translating the name of song "part of your world” whereas it should be transliterated
as was done in case of "the little mermaid”. Second example shows the LLM leaving some
of the tokens unlabeled

sentences one after the another, we will refresh the context for each query so that the LLM
doesn’t take into its generation the earlier conversation.

Till this point we were certain that we have done the most that we could do using simple
prompting, but still we were considerably behind the baseline dataset. So we moved on to
compare the F1 scores for each of the labels (see figure 4.16) and found out that the major
backliers were the labels ’Clothing’, 'Drink’ and ’OtherLOC’. After some inspection we found
out that the major reason for this is the problem of synonyms. The problem is that whenever
LLM tries to translate a given word it does so by selecting the most popular translation but
this can cause problem. Let’s consider an English word flower. Now there are multiple Hindi
translations for this word like % and o4 . Now it may be possible that only the words
labeled Y80 are the ones labeled in the test corpus while the LLM generated a dataset where
all those labels are given to %a . So this can confuse the PLM in testing phase.

Results: Self Consistent prompting did give better results where the Fl-score jumped

to 57.51 from 56.15 of the last experiment. The base score is still 68.05.

46

I want to initialise this prompt for fine labelling of sentences task with translation. The task would be as follows you will be given a sentence as a list
of tokens where each token is a word. You will also be given a list of labels (of same size as that of tokens list).

Here each label will be one among the following:

Facility, OtherLOC, HumanSettlement, Station

VisualWork, MusicalWork, WrittenWork, ArtWork, Software

MusicalGRP, PublicCORP, PrivateCORP, AerospaceManufacturer, SportsGRP, CarManufacturer, ORG

Scientist, Artist, Athlete, Politician, Cleric, SportsManager, OtherPER

Clothing, Vehicle, Food, Drink, OtherPROD

Medication/Vaccine, MedicalProcedure, AnatomicalStructure, Symptom, Disease

You need to translate the given English sentence to Hindi and then also propogate the labels based on the translation.

The label can be one among the above or it will be '0O' if the token doesn't match any of the above labels.

Also note the following points before you begin

- Each token in the output list should correspond to a word or punctuation and should not be a group of words and/or punctuations.

- There may be noise in the input data as well. You have to take that into account and generate noiseless output.

- You should not translate any non-'0' labeled tokens but transliterate them. For example, if the input is ["book", "the", "little", "mermaid"] having labels
["0", "writtenWork", "WrittenWork", "WrittenWork"] then the output should be ["g@®", "g", "fdfe@", "®fg"] and not ["g&a®", "T=&", "Sw@wd"].

Now I will give you examples for each label. You will be given the English part and you have to output the Hindi one.

Fine Label: Station

*Inputx
the 0
village 0
is 0
located O
just 0
west 0
of 0

ivano-frankivsk Station
international Station
airport Station

(0]

*0utputs

e 0

saA-$fee Station
s Station
g Station

3¢ Station

F 0

F 0

Figure 4.15: The Chained Output Prompting prompt

47

[l Generated by LLM

100 [l Original dataset -
diff. >30
80
)
2 |
o \
40 |
|
\
20 . |
oxe\t-&z&o N) Qwe(}o LR ¢ & ¢ & X
AR A N G R L & ¢ \ d Q@ Qg & oé‘.\«ﬂ
S & v@ @\e & (}e} @0'&» &8 ((o @a OP\) & (;b \«\" s ‘\/o éQ‘v qu & 0° 50 @,ﬁ &Q‘ (@ &\ Q@ é\‘(‘ Q‘\o 5
IS ¥ Sl ¢ \@0@@.’0 O R & & o F
@ 8y § 0 & O & SFeeF P W8T P
NI g\‘) [A AN ¢ 0 ¢ S Q‘: ")\\\"’{<~
QG ® PNy 0 ¢ e o R
NN N & P §
&9 & ‘\06‘ K N o
& ?

Figure 4.16: F1 score comparison for each label for the generated dataset as well as the
original dataset

48

4.2.5 Experiment 4: Biased Few Shot Prompting

LLM Used: Gemini 2.0 flash

The main learning from last experiment is that we need a way to tell the Large Language
Model that while translating a given word it should prefer a particular translation more than
the others. This can be given in the form of few-shot examples that we were initially giving
(33 examples per prompt).

The difference lies in the fact that this time instead of selecting random instances from
the English part of MultiCoNER-2 dataset, we would be selecting random labeled instances
from the Hindi part of MultiCoNER-2 and then we can sort of reverse TrA them to get there
English counterparts and put it in the prompt. (See figure 4.17)

Also we will only give those examples that contains labels that belong to the label set of
the query sentence. More formally let L represent the set of labels of the query sentence
and let Lg denote the set of labels of the example sentence. Then an example will become
the part of prompt if and only if Lg & Lg. Thus we will be having dynamic prompting
instead of static prompting.

Moreover since we are only selecting important sentences this also means that we can
increase the number of examples per label from 1 to 5. Hence we would be having around
5 x 33 = 165 examples in our prompt dataset. (See figure 4.17)

We also changed the rules part of the vanilla prompt to specify new type of rules that
would be useful. (See figure 4.18)

We also modified the code to use parallel prompting and dynamic delays which reduced
the prompting time significantly and to this end we were able to label all the sentences within
4 hours (%th of the initial time)

Results: Biased few shot prompting didn’t upset. It made the F1l-score to inflate to
60.25 where the baseline was 68.05. Till this point it was the best we could have done
but still we still lagged behind the original F1-score. The problems seems not to be in the

approach but in the MultiCoNER-2 dataset itself. This is discussed in section A

49

Labeled MCHNZ Hindi | Select 10 random instances for each fine label

LLM
Dataset
=
>
5
/ Query sentence - m
/ / a
"
=
Y
Prompt
dataset
Y
rd b - Template prompt |
< Find all the labels
, ., p & I‘-
hd Final Prompt

Figure 4.17: A depiction of pipeline for Biased Few Shot Prompting

Also note the following points before you begin

- THE INPUT MAY CONTAIN ERRORS IN THE LABELS. YOU NEED TO CORRECT THEM. DO THIS ONLY
WHEN YOU ARE COMPLETELY SURE THAT THE LABEL IS WRONG.

- FOLLOW THE SAME EXACT FORMAT AS THE INPUT SENTENCE IS GIVEN.

- ALWAYS TRANSLITERATE PROPER NOUNS.

- IF THERE ARE MULTIPLE TRANSLATIONS POSSIBLE FOR A GIVEN WORD, CHOOSE THE ONE THAT IS
GIVEN IN THE EXAMPLES. OTHERWISE, YOU CAN CHOOSE THE MOST POPULAR ONE.

Figure 4.18: New kind of prompting rules for Biased Few Shot Prompting

50

4.2.6 Experiment 5: Tree of Thoughts prompting

LLM Used: Gemini 2.0 flash

Based on the discussion in section 2.6.3 it is evident that Tree of Thoughts(ToT) prompt-
ing is in fact a very powerful technique to increase the reasoning capabilities of LLM. We
can leverage the power of ToT in our statement.

The idea is to do prompt chaining; It refers to the practice of breaking down a complex
task into sub-tasks and prompt the LLM for each of the task sequentially. In out case
we can divide TrA into two tasks: translation & annotation. In translation part we will
just be giving the unlabeled English sentence and expect an unlabeled Hindi sentence (pure
translation). In the second task we will give the labeled English sentence along with the
unlabeled Hindi sentence and expect the final labeled Hindi sentence (assisted annotation).

The second part won'’t be any challenge so we would use simple prompting for that (see fig

4.19)

/ ToT prompt for |

/ ftranslation
v LLM1 - Translated Hindi sentence
_(Translation) l
Annotated English » LLM 2 | 1 Final Annotated
sentence " (Annotation) _ > Hindi Sentence
I--"Simple Prompt for | T
Annotation /

Figure 4.19: Magnified Tree of Thoughts pipleine for TrA

51

For the first part we can use Hulbert’s ToT prompting (refer to section 2.6.3) in the hope
that this will give us better translations. (see fig 4.20)
English
with regular jockey ' barry geraghty oOtherPER back on board he raced near the front of the ten runner field

throughout the race .

Before ToT
a1 frafia STt | SR IRTEdT OtherPER dT9d &E WX 98 X1 Al8 & AR ¥ IR &F & |THY & 9T 2fg @ |

After ToT
frafi et | SAIRTE otherpER | ¥ ey W, a8 Tt SYe ¥ SR Zw uraw & e ¥ 3 B ufaw ¥ e

Figure 4.20: Example sentence that ToT improves translation. Notice how by simple
prompting the translation was simple word to word but after ToT it became more natural

Results: Tree of thought prompting significantly increased the F1 score to 62.81 from

60.25. The base score was 68.05 (Again there is a limit by A)

4.2.7 Final results: Few shot testing, Bangla NER

With this we conclude all the experiments that we did in TrA. The best final Fl-score that
we reach was 62.81 (This is limited by A). All the results are summarized in table 4.4

We also checked the performance of the generated dataset in the few-shot learning
paradigm. In other words instead of fine-tuning a PLM (supervised) learning, we parti-
tioned the dataset D into two parts S and Q. Let L(D), L(S) and L(Q) denote the set
of labels in D, S and Q respectively. Then the partition requires L(S) n L(Q) = ¢ and
L(S) u L(Q) = L(D). The set S was used as the training set and the set L(Q) was used to
generate support set and query set. We modified CONTAINER [16] by changing its base
PLM to Google’s Muril large cased [34] and used it for this purpose. The results for this

experiment are given in table 4.5

92

Table 4.4: Model Performance Comparison (F1 Scores) for Hindi

Experiment Description F1 Score
Vanilla Sentences and labels given in list 32.23
Prompting format and expected in the same

format
Chained Output More natural syntax of giving 56.15
Prompting input with a better model
Self consistent Another LLM in series to check 57.51
prompting on for mistakes, Refreshing

context
Biased few shot Dynamic prompts instead of 60.25
prompting static one, examples taken from

different corpus

Tree of thoughts Using Hulbert’s tree of thoughts 62.81

prompting methods
Baseline Original MCN-2 dataset (Hindi) 68.05
5-way 10-way
Dataset # of training Avg.

instances 1~2 shot 5~10 shot 1~2 shot 5~10 shot

Generated dataset ~ 16,000 32.23 38.81 32.70 31.45 33.80
Original Hindi MCN2 ~ 9,000 34.00 39.90 31.70 33.98 34.89

Table 4.5: F1 scores comparison on CONTAINER(Few shot learning).

We also performed TrA experiment on Bangla language i.e. the source language remains
as English but the target language is now Bangla. We were able to get similar results in this

language too. The result is given in table 4.6

Table 4.6: Model Performance Comparison (F1 Scores) for Bangla language

Experiment F1 Score

Generated Dataset 55.14

Original MCN2 dataset(Bangla) 63.55

53

Since this problem has translation as it’s sub-part, there comes a natural question on
how good translations given by Gemini are. So we compared various translation scores for
both English to Hindi translation as well as English to Bangla translation. These results are

given in table 4.7 and 4.8

Table 4.7: Translation scores comparison for English to Hindi translation by Gemini. It is
desired to have bigger BLEU, chrF, COMET scores and smaller TER score

Experiment BLEU Score TER score chrF score COMET score
Google Translate 49.16 36.09 71.09 0.87
Bing Translate 42.03 55.08 o7.11 0.71
Gemini 50.30 35.90 71.07 0.86

Table 4.8: Translation scores comparison for English to Bangla translation by Gemini. It
is desired to have bigger BLEU, chrF, COMET scores and smaller TER score

Experiment BLEU Score TER score chrF score COMET score
Google Translate 37.22 47.23 68.37 0.91
Bing Translate 39.10 44.73 69.63 0.90
Gemini 28.45 55.68 62.60 0.90

o4

Chapter 5

Conclusion and Future Work

5.1 Future Directions

This study unearthed many advantages and at the same time disadvantages of using long
context LLM. Below we discuss some future directions which can be used to tackle the
disadvantages posed by the current state of the art long context LLMs in downstream NLP

tasks.

1. Using a mixture of LLMs: Different LLMs offer different advantages, abilities which
can exploited for fine-grained labelling named entities, using reinforcement learning or

voting algorithms.

2. Building a RAG: In many cases, since the long context LLM is using it’s pre-trained
knowledge to label entities without seeing the context, a retrievel-augmented gen-
eration model (RAG) can be used to minimize the effect of harnessing pre-trained
knowledge. Up-to-date knowledge can be given in the knowledge source, and enhance-
ments in the information retrieval mechanism can reduce the biasness introduced by

the pre-trained knowledge of the long context LLM.

3. Building an AI Agent: Another direction could involve building a context-aware Al

agent that can actively query and disambiguate information from large documents or

95

external databases when faced with uncertainty in entity labeling. Such an agent would
leverage tool usage (e.g., search, lookup, summarization) and use LLMs as a decision-
making module, combining them with memory and reasoning abilities to produce more

accurate and consistent labels over long contexts.

. Incorporating Model Editing Techniques: As long-context LLMs heavily rely
on their pre-trained knowledge, they can often produce hallucinations or incorrect
labels based on outdated or biased information. Model editing [35] offers a promising
direction to address these issues without the need for full-scale retraining. By applying
model editing techniques, specific factual updates or corrections relevant to named
entities can be introduced directly into the model’s parameters. This is especially
useful in scenarios where new entities emerge or fine-grained distinctions evolve over

time (e.g., geopolitical changes, new public figures, emerging terminology).

'__‘\

Search Relevant Knowledge

Information % Sources

Relevant
Information

3 f
Prompt or
. - = D Cad
Query Context
| am—

Generated
Text 5
Response

Y

2) Query

Prompt
+

4 | Query
+

>
>

Enhanced
Context Large Language Model EndPoint

Figure 5.1: Working of RAG model

56

® @</>

Awny data ;
Oy document Code executor
N\ ey
\qucrg ,
Executiomn
RESPOWNEE . VeSPOVLSC
o Alagent
Prompt U \ TﬂSl‘Z

Uuseyr ——= NLPtounderstand —0 s R
r— prowapt, generate task
List + execute

relevant
documents
NLP
qbtng
L @ @ Awny ML model

Forecasting Optimization Prediction

@ O

Chat LLM Cther agent

SEee e

Figure 5.2: Working of an Al Agent

A 0
® &

Q@

-
— -
pryplet=
-

-——— e e e m e — - = =

Model Editing \ = 77 ;
Donald Trump Donald Trump
oo Biden X Joe Biden +/

Figure 5.3: Model editing of LLMs

57

58

Bibliography

1]

N. Ding, Y. Chen, X. Han, G. Xu, X. Wang, P. Xie, H. Zheng, Z. Liu, J. Li, and

Y

H.-G. Kim, “Prompt-learning for fine-grained entity typing,” in Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2022 (Y. Goldberg, Z. Kozareva, and
Y. Zhang, eds.), (Abu Dhabi, United Arab Emirates), pp. 6888-6901, Association for

Computational Linguistics, Dec. 2022.

N. Ding, S. Hu, W. Zhao, Y. Chen, Z. Liu, H. Zheng, and M. Sun, “OpenPrompt: An
open-source framework for prompt-learning,” in Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics: System Demonstrations (V. Basile,
Z. Kozareva, and S. Stajner, eds.), (Dublin, Ireland), pp. 105-113, Association for

Computational Linguistics, May 2022.

N. Ding, G. Xu, Y. Chen, X. Wang, X. Han, P. Xie, H. Zheng, and Z. Liu, “Few-NERD:
A few-shot named entity recognition dataset,” in Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers) (C. Zong, F. Xia,
W. Li, and R. Navigli, eds.), (Online), pp. 3198-3213, Association for Computational

Linguistics, Aug. 2021.

B. Fetahu, Z. Chen, S. Kar, O. Rokhlenko, and S. Malmasi, “Multiconer v2: a large

multilingual dataset for fine-grained and noisy named entity recognition,” 2023.

59

[5]

A. Mhaske, H. Kedia, S. Doddapaneni, M. M. Khapra, P. Kumar, R. Murthy, and
A. Kunchukuttan, “Naamapadam: A large-scale named entity annotated data for Indic
languages,” in Proceedings of the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers) (A. Rogers, J. Boyd-Graber, and
N. Okazaki, eds.), (Toronto, Canada), pp. 10441-10456, Association for Computational

Linguistics, July 2023.

S. Malmasi, A. Fang, B. Fetahu, S. Kar, and O. Rokhlenko, “MultiCoNER: A large-
scale multilingual dataset for complex named entity recognition,” in Proceedings of
the 29th International Conference on Computational Linguistics (N. Calzolari, C.-R.
Huang, H. Kim, J. Pustejovsky, L. Wanner, K.-S. Choi, P.-M. Ryu, H.-H. Chen, L. Do-
natelli, H. Ji, S. Kurohashi, P. Paggio, N. Xue, S. Kim, Y. Hahm, Z. He, T. K. Lee,
E. Santus, F. Bond, and S.-H. Na, eds.), (Gyeongju, Republic of Korea), pp. 3798-3809,

International Committee on Computational Linguistics, Oct. 2022.

T. Ruokolainen, P. Kauppinen, M. Silfverberg, and K. Lindén, “A finnish news corpus

for named entity recognition,” Language Resources and Evaluation, pp. 1-26, 2019.

S. Pradhan, A. Moschitti, N. Xue, H. T. Ng, A. Bjorkelund, O. Uryupina, Y. Zhang,
and Z. Zhong, “Towards robust linguistic analysis using OntoNotes,” in Proceedings
of the Seventeenth Conference on Computational Natural Language Learning, (Sofia,

Bulgaria), pp. 143-152, Association for Computational Linguistics, Aug. 2013.

A. Abhishek, S. B. Taneja, G. Malik, A. Anand, and A. Awekar, “Fine-grained entity
recognition with reduced false negatives and large type coverage,” in Proceedings of
the 1st Conference of the Automated Knowledge Base Construction, (Amherst, USA),

Automated Knowledge Base Construction, May 2019.

N. Ding, G. Xu, Y. Chen, X. Wang, X. Han, P. Xie, H.-T. Zheng, and Z. Liu, “Few-nerd:

A few-shot named entity recognition dataset,” 2021.

60

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. Li, H. Ding, J. Shang, J. McAuley, and Z. Feng, “Weakly supervised named entity

tagging with learnable logical rules,” 2021.

A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré, “Snorkel: rapid
training data creation with weak supervision,” Proceedings of the VLDB Endowment,

vol. 11, p. 269-282, Nov. 2017.

D. Mekala, V. Gangal, and J. Shang, “Coarse2fine: Fine-grained text classification on

coarsely-grained annotated data,” 2021.

N. Guan, K. Chen, and N. Koudas, “Can large language models design accurate label

functions?,” 2023.

R. Smith, J. A. Fries, B. Hancock, and S. H. Bach, “Language models in the loop:

Incorporating prompting into weak supervision,” 2022.

S.S. S. Das, A. Katiyar, R. J. Passonneau, and R. Zhang, “Container: Few-shot named

entity recognition via contrastive learning,” 2022.

Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan, and J. Ba, “Large

language models are human-level prompt engineers,” 2023.

T. Shin, Y. Razeghi, R. L. L. IV, E. Wallace, and S. Singh, “Autoprompt: Eliciting

knowledge from language models with automatically generated prompts,” 2020.

B. Lester, R. Al-Rfou, and N. Constant, “The power of scale for parameter-efficient

prompt tuning,” 2021.

H. Sun, A. Hiytk, and M. van der Schaar, “Query-dependent prompt evaluation and

optimization with offline inverse rl,” 2024.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and

D. Zhou, “Chain-of-thought prompting elicits reasoning in large language models,” 2023.

61

[22]

23]

[26]

[27]

28]

[29]

[31]

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large language models are

zero-shot reasoners,” 2023.

S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan, “Tree

of thoughts: Deliberate problem solving with large language models,” 2023.
J. Long, “Large language model guided tree-of-thought,” 2023.

M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, L. Gianinazzi, J. Gajda, T. Lehmann,
M. Podstawski, H. Niewiadomski, P. Nyczyk, and T. Hoefler, “Graph of Thoughts:
Solving Elaborate Problems with Large Language Models,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 38, pp. 1768217690, Mar 2024.

E. F. Tjong Kim Sang and F. De Meulder, “Introduction to the conll-2003 shared task:

Language-independent named entity recognition,” in Proceedings of CoNLL-2003, 2003.

S. Pradhan and et al., “Towards robust linguistic analysis using ontonotes,” Proceedings

of the Seventeenth Conference on Computational Natural Language Learning, 2013.

S. Malmasi and et al., “Findings of the multiconer shared task on multilingual com-
plex named entity recognition,” in Proceedings of the 15th Workshop on Computational

Approaches to Subjectivity, Sentiment, and Social Media Analysis (WASSA), 2022.

N. Zhang and et al., “Findings of the multiconer ii shared task on multilingual complex
named entity recognition and multilingual knowledge extraction,” in Proceedings of

SemFEval 2023, 2023.

D. Kakwani and et al., “Indicnlpsuite: Monolingual corpora, evaluation benchmarks and
pre-trained multilingual language models for indian languages,” in Findings of EMNLP

2020, 2020.

X. Pan and et al., “Cross-lingual name tagging and linking for 282 languages,” in Pro-

ceedings of ACL 2017, 2017.

62

[32]

[33]

[34]

[35]

[37]

[38]

[39]

H. Patil and et al., “L3cube-mahaner: A marathi named entity recognition dataset for

deep learning,” arXiv preprint arXiv:2206.13113, 2022.

A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzman,
E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov, “Unsupervised cross-lingual repre-
sentation learning at scale,” in Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics (D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault, eds.),

(Online), pp. 8440-8451, Association for Computational Linguistics, July 2020.

S. Khanuja, D. Bansal, S. Mehtani, S. Khosla, A. Dey, B. Gopalan, D. K. Margam,
P. Aggarwal, R. T. Nagipogu, S. Dave, S. Gupta, S. C. B. Gali, V. Subramanian, and

P. Talukdar, “Muril: Multilingual representations for indian languages,” 2021.

K. Meng, D. Bau, A. Andonian, and Y. Belinkov, “Locating and editing factual asso-
ciations in GPT,” Advances in Neural Information Processing Systems, vol. 36, 2022.

arXiv:2202.05262.

H. R. Ehrenberg, J. Shin, A. J. Ratner, J. A. Fries, and C. Ré, “Data programming with
ddlite: putting humans in a different part of the loop,” in Proceedings of the Workshop
on Human-In-the-Loop Data Analytics, HILDA ’16, (New York, NY, USA), Association

for Computing Machinery, 2016.

S. Malmasi, A. Fang, B. Fetahu, S. Kar, and O. Rokhlenko, “Multiconer: A large-scale

multilingual dataset for complex named entity recognition,” 2022.

E. F. Tjong Kim Sang and F. De Meulder, “Introduction to the CoNLL-2003 shared

Y

task: Language-independent named entity recognition,” in Proceedings of the Seventh

Conference on Natural Language Learning at HLT-NAACL 2003, pp. 142-147, 2003.

R. Ma, Z. Lin, X. Chen, X. Zhou, J. Wang, T. Gui, Q. Zhang, X. Gao, and Y. W.

Chen, “Coarse-to-fine few-shot learning for named entity recognition,” in Findings of the

63

[40]

[41]

Association for Computational Linguistics: ACL 2023 (A. Rogers, J. Boyd-Graber, and
N. Okazaki, eds.), (Toronto, Canada), pp. 4115-4129, Association for Computational

Linguistics, July 2023.

G. Winata, S. Wu, M. Kulkarni, T. Solorio, and D. Preotiuc-Pietro, “Cross-lingual
few-shot learning on unseen languages,” in Proceedings of the 2nd Conference of the
Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th
International Joint Conference on Natural Language Processing (Volume 1: Long Pa-
pers) (Y. He, H. Ji, S. Li, Y. Liu, and C.-H. Chang, eds.), (Online only), pp. 777-791,

Association for Computational Linguistics, Nov. 2022.

A. Ratner, C. D. Sa, S. Wu, D. Selsam, and C. Ré, “Data programming: Creating large

training sets, quickly,” 2017.

64

Appendices

65

Appendix A

Text corpus limitation in

MultiCoNER-2

The problem of TrA revolves around translating and propagating labels from a given dataset
in source language to a dataset in target language. We then later fine tune a PLM using
this dataset and test it on the test split of Hindi MultiCoNER-2.

But there is an unavoidable problem in this statement. Let’s say the English MultiCoNER-
2 dataset was generated using some English wikipedia corpus and then later divided into
test and train split. Similar thing would have been done for Hindi as well. So both the train
and test split of Hindi and English would have been taken from their respective corp-uses.

But what we were doing in TrA is taking the train split of English MCN-2 (say from some
corpus A). Translating it into Hindi and then testing it against test split of Hindi MCN-2
(would be from some other corpus B). This would mean that there would be many type of
entities that the PLM would have never seen in this generated dataset but it was thrown
onto it while testing.

For example consider the fine label clothing. In figure A.1, we depict the entities (top 5
in count) that are labeled by clothing in both Hindi and English part of MultiCoNER-2. It

is clearly evident from figure that there are entities like W8I and ST don’t exist as their

66

English translation in the English part of MultiCoNER-2. Hence these type of entities will

never be encountered by the PLM in it’s training phase.

Comparison for label: Clothing

of

pilasters crown

helmet

caps
Original Hindi MCN2 Original English MCN2
Figure A.1: A comparison of top-5 most labeled entites for both English and Hindi MCN-2

Now to prove this point we will set up an experiment. The experiment is as follows. First
take a Hindi dataset and reverse TrA it to generate a noisy English dataset. Then again
TrA it to get Hindi dataset back again. Now although this generated dataset would be very

noisy but it would have same corpus that the original Hindi training split had (See figure

A.2)

67

e e Noisy English
Original Hindi LLM 1 - » ge:erat%d
MCN2 sentences
=
>
Final Hindi
Sentences B g

Figure A.2: Pipeline for text corpus comparison experiment

One would expect to get a Fl-score lower than 60(which was the best that was obtained
till now) if the corpus didn’t matter. But we got an Fl-score of 65.02 where the baseline
was 68.05. So it clearly depicts that there is a limit on F1-score that we can reach in TrA

and no matter what we do after that we won’t be able to increase it further.

68

Appendix B

Examples used for LLM in-context

learning in R2F

For the experiments done for R2F, the example sentences that were provided to aid the
LLM for in-context learning weren’t changed throughout the experiments. These examples

are listed below.

1. Sentence: ['SW', "AfRRILT, ‘HASH', "', 'Hg', ‘&, "B, "W, 'Tw', "HGURAT, &', "BEeiec]

Fine Labels: ['AnatomicalStructure’, ’0’, ’O’, ’0’, ’0’, 'O’, ’0’, 'O, ’0’, ’0’, 'O’ O]

2. Sentence: [Tg, '¥dml, AT, ', 9, HOHAT, Hd, ‘&, AT, ‘SR, T, g, T,
g1
Fine Labels: [O’,’0’,’0’,’0’,’0’,’0’, ’0’, ’O’, ’O’, "MusicalWork’, '0’, 'O’, ’0O’, O’]
3. Sentence: [T, "WHS', Hge, W@, ‘IUANThT, FHHT, ‘Faei, ‘&', AT, "dsfiemor,
R, g, A, g8, @, & AT, =@, ', e, Y, fafediear,)]
Fine Labels: [0’, °0", 0", ‘0", '0", °0", 0", '0’, °0", °0", 0", '0", °0", 0", '0’, °0,

’O?, 7077 7O77 70’7 7077 7ORG7’ 707]
4. Sentence: [|qa;|’ 'E.rlgal, |ﬁ|’ |®—d-l’ |a;|’ '—\qTeI', 'ml, 'EﬂFﬁ', lg’a-l’ vﬁv’ |~q:|aa@-v, |||]

69

10.

11.

Fine Labels: 'O, ’0’,’0’,’0’, 0", 'O, 'O, ’0’, ’0’, 'O, "Facility’, 'O’]

Sentence: [T, =AY, &', T, W', 'IF', "wAHwET, H, Weal, A, "HT, HHAAT, TR,
S, ‘2]

Fine Labels: ['O’, ’0’, ’0’, ’0’, '0’, 'O’, ’O’, ’O’, *Cleric’, 'Cleric’, 'O, ’O’, ’0’, ’O’,
0

Sentence: ['&@@, =, 'qul, '@, "AHY, GE@T, ', @, E, LI, W, Q' @b,
RIEEICCI

Fine Labels: ['O’, ’0O’, ’0’, ’0’, ’0’, ’0’, ’0’, ’0’, ’OtherLOC’, "OtherLOC’, *0O’, *O’,
‘0,07, 07, 0]

Sentence: [Td', &', 'ITINT, 'R0, 'O, &, o0, "W, &, T, Temar, T, o]
Fine Labels: ['O’, 'O, ’0’, ’0’, 'O’, ’0’, ’0O’, 'Drink’, 'O’, ’0’, ’0’, 'O’ *0O’]

Sentence: [lfe', "GeAle', ‘&', A1, Hifclsw', "Iz, ‘&Y', 'Uidfehar, 'gRT, "dar’, e,
ST, "GehdT', '%', "]

Fine Labels: ['O’, 'Medication/Vaccine’, ’O’, O’, 'O, 'O’, 'O’, '0’, 'O’ '0’, 0, ’0O’,
‘0,0, 0]

Sentence: [, "H8, faemoe, 'faama=r, fast’, 'food’, ’of’, 'usa’, ’hindi’, 'IE, "R,
ST, "dH, g, 'F, T, ‘w5, Tega, ", 'SuT, HRdr, Bl

Fine Labels: [O’,’0’,’O’, ’O’, "Food’, 'Food’, "Food’, "Food’, 'Food’, ’O’, ’0’,’0’, ’O’,
‘0,07, 7’07, ’07, 07, 07, 0, 'O, O]

Sentence: [¥ART, ‘&', T, TIFE', &R, "&H, "W, ‘F, ‘TS, H, WY, @, S,
T, ']

Fine Labels: ['O’,’0’, ’0’,’0O’, ’0’, 'O’, ’"CarManufacturer’, ’O’, 'O’, ’0’, ’0’, ’0’, ’0O’,
'0’, '0’]

o o

Sentence: [d8, 'F®', ', eI, "Ugdl, ‘¢, ‘dloh', 'Teh', "THIERe, '#R, T, TMier, |-

h']

70

12.

13.

14.

15.

16.

17.

18.

Fine Labels: ['O’, ’0’,’0’,’0’, ’0’, 'O’ ’0O’, ’0O’, 'Clothing’, '0’, ’0’, ’0O’, 'O’]

Sentence: [T, awer, @Y, i, i, fwEr, o, %, e, F, o, e
R, ", 31

Fine Labels: ['O’,’0O’, 'O’, ’0’, "MedicalProcedure’, "MedicalProcedure’, ’O’, 'O’, O’,
‘0,07, 07, ’0, 0", 0]

Sentence: [THesa@ed, 'wr3ct, fopehe, 'aaa’, 93", BT, '3, '3', '8, ‘&', '@, ':€, 'HAY,
R M VAR 24 T e | e L U T

Fine Labels: ['SportsGRP’, 'SportsGRP’, 'SportsGRP’, "SportsGRP’, 'O’, 'O’ *O’,
‘0,07, 707, °0°, 07, 07,07, 07, 0, 07, 07, 0, 0, 0, 07, O]

Sentence: ['F8', '9830", ‘¥, QU 'H, TagarRasheia, &', "AIsh R, ‘&', T, 'YE, ‘g,
Roery, wRe, Y, AT, ", wa, R, e, B, e, wi, e, e,

'or1']

Fine Labels: [0, °0’, ’0’, 'O, *0’, "OtherPER’, *0’, '0’, 'O, *0", '0", 'O, *0", 0",
707’ 707’ 7077 707, 707’ 7077 7077 707’ 7077 707, 707’ 7077 707}

Sentence: [TAAHT, ‘Foradar, ki, <Sfuae, ot @fe, dEe, R, wRar, -
ﬁaﬁv’ |ﬁ|, lgR-l, v-rl—q-l-lv]

Fine Labels: ["Athlete’, ’Athlete’, 'O’, O’ 'O, 'O, 'O, ’O’, 'O’, "Athlete’, "Athlete’,
707’ 707, 707]

Sentence: [, By, ey, B, g, o, W, R, 1]

Fine Labels: ['O’, "HumanSettlement’, '"HumanSettlement’, ’O’, ’O’, 'O’, 0", 'O’ "0’
Sentence: [FR, ¥, W, T, &, ', ey, ', g, "W, e, B

Fine Labels: ['Station’, ’Station’, 'Station’, ’O’, ’0’, 'O’, ’0’, 'O, '0’, ’0’, 'O’ O’]

Sentence: [W&', 'UgdT, AU, 'goiagi-e, "L, ‘24’ H, "AE.LIH, GRT, UL,
lﬁ;q-l-l’ lTl—qu, la—l-l’ lr_ﬁ-l, l-q-gﬁ:‘-l’ va'ﬁ-l, va:n-q-v, '?@7'”', laﬁ?-l’ "J:IE""IT', leﬂ-ll]

71

19.

20.

21.

22.

23.

24.

25.

26.

Fine Labels: O’,’0’,’0’, ’0’, ’0’, ’0’, ’O’, ’OtherPROD’, ’0O’, ’0’, ’O’, ’0’, ’O’, ’O’,
7O77 707, 7077 707’ 7077 7077 707]

Sentence: [&, TRUH, '&HI®, "smed’, '(, &I, 'euee, V), 'F, WE@w']

Fine Labels: ["ArtWork’, "ArtWork’, "ArtWork’, ’ArtWork’, *0O’, 'O, ’0O’, ’0’, ’O’, *O’]
Sentence: [FHT, '#FHI-&ST, ‘', 'dl', ‘I, T, 'Th, 'ggiafer, Tergt!']

Fine Labels: ['Politician’, "Politician’, 'O’, ’0’, 'O, ’0’, ’0’, 'O’ "O’]

Sentence: ['ﬁaé', '@Uﬁ;"{', T, '_E'»?mﬁ', 'tl'%?'ﬂ', 'ﬁ', Teh', '351%', '%', &, 'ﬁ', 'éﬁﬁ??:ﬁ', 'ﬁ',
'R, 'feRar,]

Fine Labels: ['Artist’, 'Artist’, 'O’, 0", ’0O’, '0’, 'O, ’0’, ’0’, ’0’, 'O, 'O, "0, 0/,
707’ 507]

Sentence: ['R0%0", "&I', "R, AT, "W, "FaT', TATI']
Fine Labels: 'O, ’0’, ’O’, '"MusicalGRP’, 'O’, 'O’, 'O’]
Sentence: [Thd', "HEgH, "W, TR, ST, "GehdT', B 1']
Fine Labels: O’ "Software’, O, ’0’,’0’, 'O’ "O’]

Sentence: ['WEIYd’, T, "F', "HRUT, Ik, U, "YHRASE', 'FEE, B1']

Fine Labels: ['O’,’0’, ’0O’, ’0’, 'O’, ’O’, "Disease’, 'Disease’, 'O’]

Sentence: ['ARYHT, 'S, A, ‘&', 'GROT, ‘Fs, 'WRMHHMA, ‘@I, "AATA, H, "9l
T, T, 9]

Fine Labels: ['Symptom’, ’O’, ’0’, 'O, ’0’, 'O, ’0’, ’0’, 'O, ’0’, 'O, '0’, 0, "0
Sentence: [T, ‘&', 'SEeerT, &, He', "0, fewull, ‘wd’, gV, O, (I@ER), H,
lwl’ lmul’ lﬁl’ lg?l’ lml’ l@-l’ lq’w" lﬁaq-l, l@aﬁl’ lwl, laTm—E)rl’ 'ﬂm—rll]

Fine Labels: ['O’, ’0’, ’0’, 07, 07, 07, 07, 'O, 'O’ "WrittenWork’, "WrittenWork’,
7077 707’ 7077 7077 7077 7077 707’ 7077 707’ 707’ 707’ 7077 707}

72

27.

28.

29.

30.

31.

32.

33.

Sentence: ['I%, "Ta e, UId’, "W, 'HaAR', &Y, "=, T, g, "di1']
Fine Labels: [0, "Vehicle’, "Vehicle’, '0’, ’0’, ’0’, '0", *0’, 'O, *0O']

Sentence: ['quf', "g&diaRuT, &', "Ugel, AT, JgHl", "dl, TaQqw, w, q', <fhr, vIRE,
SR, T, TR, T, oml']

Fine Labels: [O’, 'O, °0’, 0, ’0’, °0’, ’0’, °0’,’0’, °0’, "PublicCorp’, "PublicCorp’,
0,07, 707,07, ’0']

Sentence: [Tg, "I, ' TEE-H", 'TARHR', ‘&', €0, "W, 'SR, ‘&edr, "g1']

Fine Labels: ['O’, '0", Scientist’, '0’, 0’, '0’, '0", '0’, *0?, *0’]

Sentence: [, 'g', -, 'g", -, 'R, "F, T, A, LT, S, 'WeheE, ‘&, T, AW,
"ﬂﬁ-‘lﬁ’f‘, ‘%‘, qie, H?‘Fﬁ', %F', &', 'ﬁ', 'ﬁWT"IT', T, gnl']

Fine Labels: ['O’, 'O, ’0O’, ’0’, 0, ’0’, 'O’, 'O’, 'O’ ’SportsManager’, ’SportsMan-
ager’, 'O’ ’0’, 'O, 'O, ’0’, 'O, 707, 'O, 07, 'O, 'O, 07, 07, O]

Sentence: ['R000', 'H, HUfY, ‘&, 'FALT, 'gR', ‘&, UK, 'Y, &I, 'TF, "HeAyul, @rel’,
e, IS, 9T, S, e, W, i, iR, 1R, T,]

Fine Labels: [0, °07, '0", '0’, '0’, ‘0", "0, 0", °0", '0", '0", '0’, ‘0", 0", '0", °0,
'0',°0’,°0", 0", "PrivateCorp’, ‘0", '0’, ‘0", ‘0", "0']

Sentence: ['&F8, T, 'ar, "sremge’, 'S, ', 'gRr, 'fhar, &, anl']

Fine Labels: ['O’, 'O, ’0’, ’0O’, "AerospaceManufacturer’, 'O’, 0", 'O, ’0’, ’O’]
Sentence: ['ﬁﬁ?"q', 'ﬁ', 'aﬁa%aﬁ', "GRT, 'UQ@?[', '%Cﬂ', T, T, '3ﬁ?', '¢','2000', 'ﬂﬁﬂ‘lﬂ‘ﬁﬁ',
R, R, ', Rt &, R, i, R,

Fine Labels: ['O’,’0’, ’0’,’0’, ’0’, ’0’, 'O, ’0’, 'O’ ’O’, "Visual Work’, "VisualWork’,
VisualWork’, 'O, ’0’, ’0’, 'O, ’0’, ’0’, ’O’, ’0O’, 'O

73

Appendix C

Examples used for LLM in-context

learning in TrA

For the experiments, the example sentences that were provided to aid the LLM for in-context

learning weren’t changed throughout the experiments. These examples are listed below.

1. Fine Label: Station
English
Tokens: ['the’, 'village’, 'is’, ’located’, ’just’, 'west’, 'of’, ’ivano-frankivsk’, ’interna-
tional’, "airport’, "]
FineLabels: ['O’, ’0’,’0’, 'O’, ’0’, ’0O’, 'O, *Station’, 'Station’, 'Station’, 'O’]
Hindi
Tokens: [, "S- SRk, i, e, o, B, e, o, &, Rerr, 2, 1]
FineLabels: ['O’, ’Station’, ’Station’, 'Station’, ’Station’, ’O’, 'O’, ’O’, ’0’, 'O’, *O’,

707]

2. Fine Label: Artist
English
Tokens: ['james’, ’i’, 'took’, ’a’, 'greater’, 'interest’, 'in’, 'naval’, 'power’; "]

FineLabels: ["Artist’, "Artist’, 'O, ’0’, 'O, ’0’, ’0’, '0O’, '0’, "0’

74

Hindi
Tokens: [S&, 'a1ms.’, ', '@l 'afk, 'd', s1fees, S, o, '1']
FineLabels: [Artist’, 'Artist’, ’0O’, ’0’, ’0’,’0’,’0’,’0’, 'O, 'O’]

. Fine Label: HumanSettlement

English

))M

Tokens: ['the’, 'county’, 'has’; ’one’, ’city’, ’:’, "tehran’,]
FineLabels: ['O’, ’O’, ’0’, 'O’, ’0’, ’O’, "HumanSettlement’, O’
Hindi

Tokens: [‘&R&e, W', T, ', '8, "2, "qed T, 'I']

FineLabels: ['O’, ’0’,’0’, '0O’, ’0’, ’O’, "HumanSettlement’, O’

. Fine Label: SportsGRP

English

Tokens: ['he’, 'has’, "also’, 'pitched’, ’'in’; the’, 'minor’, 'leagues’, 'for’, ’the’; ’atlanta’,
‘braves’, ’and’, boston’, ‘red’; ’sox’, |

FineLabels: ['O’, 0", 'O, '0’, ’0’, ’0’, 'O, 'O’, 'O, ’0O’, "SportsGRP’, "SportsGRP’,
'O, ’SportsGRP’, "SportsGRP’, "SportsGRP’, "0’

Hindi

Tokens: [, HIER, '@, ', 'dt', 'sfedier, ‘s, "R, 4, @, e, &, T,
o, @, ',]

FineLabels: [0, ’O’, 'O’, 'O, *O’, 'SportsGRP’, "SportsGRP’, ’O’, 'SportsGRP’,
"SportsGRP’, "SportsGRP’, ’O’, 'O, ’0’, ’0’, 'O’, 'O’

. Fine Label: Food
English

VA A P N A

Tokens: ['goulash’, 'soup’, ’;’, "it’, ’is’, 'possible’, 'to’, 'cook’, 'gulyas’, "like’; 'a’, 'stew’,

Y) >

as’, 'well’, '(’, ’e.g., 'székelygulyas’, ’)’,]

75

FineLabels: [Food’, ’0’,’0’,’0’, ’0’, ’0’,’0’,’0’, ’0’, ’0’, 'O, ’0’, 'O, 'O, 0, ’O’,
Food’, 'O, *0’]

Hindi

Tokens: [Tmsr, qq', '}, "eRr, &, 'TE, ¥, "B, '@, W, vwEr, "@a, g, ', o,
Eeheiedrer,), '1']

FineLabels: [Food’, 'O’, ’0O’, 'O’, ’0O’, 'O’, ’0O’, 'O’, ’0’, 'O’, ’0’, '0O’, ’0’, 'O’ "0,
Food’, 'O, "0’]

6. Fine Label: MusicalGRP
English
Tokens: ['initially’, ’def’, ’leppard’, 'was’, "scheduled’, 'to’, 'play’, ’at’, 'the’, festival’,
7]
FineLabels: ['O’, "Musical GRP’, 'MusicalGRP’, 'O’, ’0’, 'O’, ’0’, ’0’, ’0’, ’0’, "O’]
Hindi
Tokens: ['TB3A, 'H', 'S, 'WUS, '@ER, 'H', "WeH ', ‘&, ‘&, Ty, Fgifed’, 'an']
FineLabels: ['O’, "MusicalGRP’, "Musical GRP’, 'O’, *0’, 'O’, *0’, 'O’, ’0’, 'O’, ’0O’,
0]

7. Fine Label: Politician
English
Tokens: ['he’, ’started’, ’his’, 'national’, 'political’, 'career’, ’as’, 'a’, ’supporter’, "of”,
'zia-ul-haq’,]
FineLabels: ['O’, 'O’,’0’, 'O, ’0’,’0’, ’O’, ’0’, ’O’, 'O’, "Politician’, "O’]
Hindi
Tokens: [IIA", AT, LA, ASHHI{dew', ‘HRA, "fa1-3a-8h, ‘&', ‘qHeler, &', &0, H,
‘o, R
FineLabels: ['O’, ’O’, ’0’, ’O’, 'Y, "Politician’, 'O’, ’0’, ’0’, '0’, ’0’, ’0O’, 'O’]

8. Fine Label: Software

76

10.

English

Tokens: [firefox’, 'for’, ’ios’, ’a’, 'project’, for’, ’ios’, 'smartphones’, ’and’, tablets’]
FineLabels: ['Software’, 'Software’, ’Software’, 'O’, ’0’, ’O’, 'O’, ’0’, ’O’, '0’]

Hindi

Tokens: [STESAEY, &, "Ry, "FrRwiaw, T, Towe, 7, W, A, W, w0,
e, %, R, 3]

FineLabels: ['Software’, *Software’, "Software’, "Software’, *0O’, 'O’; 'O, 'O’, ’0O’, *O’,

?07’ ’O?7 7077 ?077 707]

Fine Label: AnatomicalStructure FEnglish

Tokens: ['the’, ’sternohyoid’, 'and’, ’sternothyroid’, 'muscles’, ’stretch’; ’along’, 'its’,
length’, /|

FineLabels: ['O’, ’AnatomicalStructure’, ’O’, ’AnatomicalStructure’, ’AnatomicalStruc-
ture’, ’O’, 'O’, 707, 'O’ 'O’]

Hindi

Tokens: [Egrss, '3k, TR, WAl '5q&', '@a1g), ‘&', Iy, 'GiEl’, 'S, ‘e l']

FineLabels: [AnatomicalStructure’, 'O’ ’AnatomicalStructure’, ’AnatomicalStruc-

ture’, 707’ 707’ 707, 707, 707’ 707, 707}

Fine Label: CarManufacturer

English

Tokens: ['with’, ’his’, ’family’, ’he’, ’lived’, ’in’, ’a’, ’cottage’, 'and’, 'used’; ’the’,

Y Y]

"horch’, “car’, 'with’, ’a’; ’sailor’, ’as’, ’a’, ’driver’, /|

FineLabels: ['O’, ’0’,’0’, 'O, ’0’,’0’, ’0’,’0’, ’O’, 0, ’O’, 'CarManufacturer’, ’0’,
‘0,07, 7’07, °07, 0, 0, 0

Hindi

Tokens: [‘#UHY, 'URaR, ‘&', &, 98, 'T&', "Fledr, '#, @, A, #6R, B, HR, @',

7

11.

12.

13.

'WT', 'I,’EF', lq—lﬁal, lﬁl, IWI’ lagl’ lml, lﬁl’ vml’ |éj||]
FineLabels: ['O’, ’0’,’0’, 'O’, 0, ’0’, ’0’, ’0’, 'O’, 0, ’O’, 'CarManufacturer’, ’0’,
707’ 707’ 7077 707’ 7O77 7077 707’ 707’ 707’ 7077 707]

Fine Label: Athlete

English

Tokens: ['he’, ’eventually’, took’, two’, ’seconds’, ’as’, 'ben’, ’swift’, ’(’,)’ ’snatched’,
‘the’, ’three’, ’bonus’, ’seconds’, |

FineLabels: ['O’, 707,70, ’0’, ’0O’, 'O’, "Athlete’, *Athlete’, 'O’, ’0’, 'O’, ’0’, 'O’, ’0O’,
‘0,0

Hindi

Tokens: [, 380, '3, ke, R, o, 7, Rawe, (,), A, 6, @, we,
o,)

FineLabels: ['O’, ’0’, 70, ’0’, ’0O’, 'O’, "Athlete’, *Athlete’, 'O’, ’0’, 'O’, ’0’, 'O’, *O’,
‘0,0

Fine Label: ArtWork

English

Tokens: ['she’, 'produced’, 'miniature’, 'paintings’, "and’, 'pastels’, 'during’, "her’, ’ca-
reer’, "]

FineLabels: ['O’, 'O’, ’ArtWork’, ’ArtWork’, ’0’, ’O’, ’0’, ’0’, 'O’, O’

Hindi

Tokens: [F&', "3, ‘SRR, 'F, 'SR, "', "Tsfepetr, "R, "Ukeew, FfHd, Ty
FineLabels: ['O’, ’0’,’0’, 'O’, ’0’, "ArtWork’, ’ArtWork’, ’0’, 'O’, ’0’, "0O’]

Fine Label: Vehicle
English Tokens: ['the’, 'ship’, 'could’; 'reach’, 'a’, 'maximum’, 'speed’, ’of’, '25’, "knots’,
‘among’, 'the’; 'fastest’, ’of’, ’its’, "time’, ’but’, ’still’, ’slower’, 'than’, ’the’, 'maureta-

L

nia’, "]

78

14.

15.

FineLabels: [0’, '0", 0", '0", 'O, '0’, '0", 0", °07, 0", '0", 'O, '0’, °0", 0", *0,
'0,°0’,°0", 0", "0’, "Vehicle, "0

Hindi

Tokens: ['STeNT, '3, 9, ‘&', "Fa', "aut, ', &, '25", e, &I, "AAfgenad’, T, qH,
g, FehdT, AT, wfe, O, oY, HiRear, @, i, ']

FineLabels: ['O’, ’0O’, O’, ’0’, '0’, 'O, 'O, ’0O’, ’0’, 0, 07, 'O, 'O, ’0’, ’0’, ’0O’,
'07,7°0%,°0", °0", "Vehicle', '0", '0", "0

Fine Label: OtherLOC

English

Tokens: ['martha’, 'was’, 'inducted’, ’into’, "the’, 'maryland’, "'women’, ”’s”, *hall’, "of”,
‘fame’; ’in’; "1988’, 7]

FineLabels: ['O’, ’0’, ’0O’, ’0O’, ’O’, "OtherLOC’, ’OtherLOC’, ’OtherLOC’, 'Other-
LOC’, ’OtherLOC’, *OtherLOC’, *0O’, ’O’, ’O’]

Hindi

Tokens: [l &Y', '1988", 'H', Beeie’, "Algar, 8iar, '$i(w', &', ', gitafad’, 'far, ']

FineLabels: [0, '0’, '0’, *0’, *OtherLOC”, *OtherLOC”, *OtherLOC”, *OtherLOC’,
'OtherLOC’, 0", '0”, ’0”, O]

Fine Label: Facility

English

Tokens: ['the’, 'artesian’, 'well’, ’at’, ’artesian’, ‘commons’, 'park’, ’a’, former’, 'park-
ing’, ’lot’, is’, "active’; "]

FineLabels: ['O’, ’0’,’O’, 'Y, "Facility’, 'Facility’, 'O’, ’0’, ’O’, 0", ’0O’, 0, 'O’ O’]
Hindi

Tokens: ['ATRGT, 'IeT, "ARGT, 'S, "Ureh', 'H', "TH', "qd, "UIidT, 'diie, 8, 'S, Afeh,
1]

79

16.

17.

18.

FineLabels: [O’,’O’, "Facility’, 'Facility’, 'Facility’, ’O’, ’O’, 'O, ’0’,’0’,’0’,’0’, ’O’,
707]

Fine Label: OtherPROD

English

Tokens: ['he’, 'began’, ’his’, 'business’, ‘career’, ’as’, ’a’; 'stationery’, ’salesman’; "]
FineLabels: ['O’, ’0’,’0’, 'O, ’0’, ’0’, 'O’, ’OtherPROD’, ’0’, ’0O’]

Hindi

Tokens: [, "SI0, 'SAEMAH, 'HRIR', Tk, WY, fagkar, &, &0, 'H', "¢, Twan]
FineLabels: ['O’, ’0O’,’0’, ’O’, ’0’, ’OtherPROD’, ’0O’, 'O’, ’0’, ’0O’, 'O’, O]

Fine Label: MusicalWork

English

Tokens: ['yoko’, 'wrote’, ’about’, ’the’; ’song’, 'when’, ’it’, 'was’, ’included’, ’on’, ’her’,
’1992, boxset’, ‘onobox’, "’

FineLabels: ['O’, ’0’,’0’, ’0’, 'O, ’0’, 'O, 0, ’0’, 07, ’O’, ’0’, ’O’, "Musical Work’,
0]

Hindi

Tokens: (A, &, 37, T, %, 'aR, &, R, W, @, ‘T, 1992, W, -
ey, AT, A,]

FineLabels: ['O’, ’0’,’0’, ’0’,’0’, ’0’, 'O, 0, 'O, 07, ’O’, O, ’O’, "Musical Work’,
‘0,07, 07, 0]

Fine Label: AerospaceManufacturer

English

Tokens: ['the’, ’school’, "trained’, "volunteers’, 'from’, 'the’, "local’, "territorial’, "units’,
'using’, "luscombe’; ’seaplanes’;]

FineLabels: ['O’, O’, 'O, 0’, 'O, 07, 'O, 07, ’O’, ’O’, *AerospaceManufacturer’,
‘0,70

80

19.

20.

Hindi

Tokens: [Tpal, 9", TIHE, "8, YAH', &', 'TAHGHI', "B, 'GHRAE, W', v,
IYANT, ‘e, giAferd’, T

FineLabels: ['O’, ’O’, 'O, 0’, 'O, 07, 'O, 'O, ’0O’, 'O’, ’AerospaceManufacturer’,
07,07, 0", 0]

Fine Label: Medication/Vaccine

English

Tokens: ['the’, ’caffeine’, 'level’, ’is’, 'normal’, 'for’, ’green’, ’tea’, ’and’, ’it’, ’can’, "be’,
"drunk’, ’throughout’, the’; ’day’, "]

FineLabels: ['O’, Medication/Vaccine’, '0’, 'O, ’O’, ’0’, ’0’, '0’, 'O’, 'O, ’0O’, ’O’,
‘0,07, 7’07, 70, 0]

Hindi

Tokens: [®HH, &', &R, g, TR0, &, 70, W=, '§, R, 78, @@, T, e, S,

gehdT', '81']

FineLabels: ['Medication/Vaccine’, 'O’ ’0O’, 'O, 'O, ’0’, ’0’, ’0’, 'O, 'O, ’0’, ’O’,
707’ 707’ 7077 707, 707]

Fine Label: Scientist

English

Tokens: ['the’, ’fracture’, ’strength’, ’(’, ’or’, 'micro’, ’crack’, 'nucleation’; ’stress’,
"), of?) ’a’) 'material’, 'was’, 'first’, “theoretically’, ’estimated’; 'by’, ’alan’, 'arnold’,
‘griffith’; 'in’; 719217, 72’

FineLabels: ['O’, ’0O’, O’, ’0’, '0O’, 'O, 'O, ’0O’, ’0’, 0, 07, 'O, 'O, 'O, ’0’, ’0O’,
'0’, ’O’, "Scientist’, "Scientist’, "Scientist’, ’O’, 'O’ *O’]

Hindi

Tokens: [T, '?Tlﬂ";ﬁ', 'Eﬁ', K-CI 'Eﬁ', 'qﬁﬁ', (', ar, 'Qi&‘?', ", ':{a'?'l'a-‘lﬁ', GEICH R
a7, Rigier, s, T, W, o, e, B, R, 1921, H, i,]

81

21.

22.

23.

FlneLabelS |i7O77 707’ 7077 707’ 7O?7 7077 7O77 7077 ’07’ 70?’ 7077 7O77 7077 ’07’ 7O?7 7077

'0’, ’O’, "Scientist’, "Scientist’, "Scientist’, ’O’, 'O’, ’0’, "0’ 'O’]

Fine Label: SportsManager
English

))

Tokens: [rams’, ’assistant’, 'vic’, ‘rapp’, 'was’, 'brought’, ’in’, ’as’, ’the’; 'running’,
"backs’, ’coach’, "]

FineLabels: ['O’, 'O’, SportsManager’, 'SportsManager’, ’O’, 'O’ ’O’, ’0’, 'O’, ’O’,
707’ 707’ 707]

Hindi

Tokens: [T, ', "G&I, "SI, 'faes, @, "&l', AT, ‘9o, "B, 'F, w, H, TYH, T,

RIIN|
FineLabels: ['O’, 'O, ’O’, 'O’, ’SportsManager’, 'SportsManager’, ’O’, ’0O’, 'O’, ’0O’,
707’ 707’ 707’ 707’ 7O77 707]

Fine Label: Clothing

English

Tokens: [the’, 'riders’; ’in’, ’the’, 'team’, 'that’, ’led’, ’this’, ’classification’, 'wore’,
'yellow’, “caps’,]

FineLabels: ['O’, ’0’,’0’, 'O, ’0’, 70, 'O, ’0’, 'O’, ’0’, ’0O’, "Clothing’, 'O’]

Hindi

Tokens: (4, %, "aaw, Ty, zer, afiaor, v, e, R,), e, "ady, weef
FineLabels: ['O’, ’O’, ’O’, ’O’, 'O, 'O, 'O, 'O, 'O’, 'O’, ’O’, 'Clothing’, *O’]

Fine Label: ORG

English

Tokens: [irish’, ’legislators’, 'began’, 'to’, ’comment’; "publicly’, "from’, 2003’, ’some’,
‘tentatively’, 'suggesting’, 'legislation’, ’and’, 'some’, 'referring’, 'to’, ’catholic’; "teach-

ings’, /|

82

24.

25.

FineLabels: ['O’, 'O’, '0O’, ’O’, ’0’, ’0O’, 'O’ 'O, 0%, ’0’, ’0, 'O, 'O, 'O, ’0’, 07,
'ORG’, 'O, '0’]

Hindi

Tokens: [TaRer, e, 12003, &, “ardaiay, ‘e, &, Rowh, @, @,), 59,
e, R, e, W, g, e, g, e, R, v, el)
2]

FineLabels: ['O’, ’O’, O’, ’0’, ’0O’, ’0O’, 'O, 'O, ’0O’, "0, 07, 'O’ 'O, 'O, ’0’, "0,
'0’,’07,’0, ’0’, 'ORG, 'O, ’07, 'O, 'O, O]

Fine Label: MedicalProcedure

English

Tokens: ['one’, form’; 'of’, "treatment’, ’is’, ’cognitive’, "behavioral’, therapy’, "'which’,
‘promotes’, 'desensitization’, ‘'methods’;]

FineLabels: ['O’, ’0’,’0O’, ’0’, ’O’, ’MedicalProcedure’, "MedicalProcedure’, "Medical-
Procedure’, '0O’, ’0’, 'O’, 'O, "0

Hindi

Tokens: [SUER, &', 'T&', &0, 'H', "GqHIA®', '@aar, "Rfear, e, '8,), 'S, 'Hder-
BAT, ', "Rl "I, UicdTied’, el '81']

FineLabels: ['O’, ’0’,’0O’, ’0’, ’O’, ’MedicalProcedure’, "MedicalProcedure’, "Medical-

PrOCedure77 707’ 7077 707’ ?07’ 507’ 707’ 707’ 7O’7 7O77 707’ ’O?]

Fine Label: Cleric

English

Tokens: ['his’, 'method’; ’and’, 'that’, ’of’, ’sulpice’, "have’, "helped’, 'spread’, the’,
"habit’; ’of’, 'meditating’, 'beyond’; ’the’, ’cloister’;]

FineLabels: ['O’, ’O’, 'O, ’0O’, 0’, 'Cleric’, ’0O’, ’0’, '0’, 'O, ’0O’, 0, 'O’, ’0O’, "0,
‘07,70

Hindi

83

26.

27.

TOkenS: ['ﬁ‘, Fq:f;ﬁ" laﬂ?v’ 'W', lﬁl’ |q—&r%|’ vﬁ-v, |w-|:|-l’ vmv, lﬁl’ 'Wl, lﬁl’ v-qal’
@I, e, @, W e, ' Heg, @ 2]
FineLabels: [0, '0’, 'O, "Cleric’, ’0’, ’0’, '0’, 0, "0, ’0’, ’0’, °0’, 'O, "0, "0,

’()77 7()77 7()77 70’7 7037 7077 ’O?]

Fine Label: WrittenWork
English
Tokens: ['in’, 'most’, ’of’, 'these’, ’'cases’, ’local’, 'mewspapers’, ’such’, ’as’, ’the’,
"chicago’, 'tribune’, 'reported’, 'on’, 'the’, ’arrests’, 'and’, ’subsequent’, court’, 'cases’,
7]

FineLabels: [O’, 'O’ ’0’, ’0’, 'O, 07, ’0’, 'O, 'O, O, "WrittenWork’, "Written-
Work’, ’0’, ’0O’, ’0’, ’O’, 07, ’0’, 'O’ ’0’, 'O

Hindi

Tokens: ['&, 'AfYHRr, HHA!, H, CqHT, GHERTE, S, TR, R, s,
FineLabels: ['O’, 'O’, 'O, ’0’, 07, ’O’, ’0O’, O, "WrittenWork’, "WrittenWork’, ’O’,
‘0,07, 7’07, °07, 07, 07, 07, 07, 0, O

Fine Label: VisualWork

English

Tokens: ['tidying’, 'up’, 'with’, 'marie’, 'kondo’, ’and’, ’love’, ’is’, 'blind’, 'received’,
‘nominations’, ’in’; '2019’; ’and’, '2020’, 'respectively’, "]

FineLabels: ['VisualWork’, "VisualWork’, 'VisualWork’, "VisualWork’, "VisualWork’,
'O, "VisualWork’, "VisualWork’, "VisualWork’, *0’, ’O’, 'O’, ’0’, 'O’, ’0’, ’0O’, 'O’]
Hindi

Tokens: [, o, foa, "%, FH2Y, ‘o, @@, 5, WS, F, w2019, 9w,
'2020", 'H', iR, UG, "gel']

FineLabels: ['VisualWork’, "VisualWork’, "VisualWork’, "VisualWork’, "VisualWork’,

84

28.

29.

30.

'O, "'VisualWork’, "VisualWork’, "VisualWork’, 'O, 'O, ’0’, ’0’, ’0’, ’0’, ’0’, ’O’, ’O’]

Fine Label: Symptom

English

Tokens: ['in’, '2000s’, ’although’, ’he’, ’played’, 'many’, 'matches’, ’he’, ’suffered’,
'from’, ’occupational’, 'burnout’, ’in’, ’2005’, ’and’, ’chronic’, fatigue’, ’syndrome’,
'in’, "2009’, "]

FineLabels: ['O’, ’0’,’0’, ’0’,’0’, ’0’, ’0’, ’0’, ’0’, 'O’, ’Symptom’, ’Symptom’, ’O’,
'0’,’0’, "'Symptom’, 'Symptom’, ’Symptom’, 'O’, 'O’ *O’]

Hindi

Tokens: [2000', %, "2, &, ‘aweifs, 20, &, &, &,), 98, 2005, ¥, -
o, T, SR, 2009', ¥, e, e, Regw, &, W, @]

FineLabels: ['O’, ’O’, 'O, ’0’, 'O, ’0’, ’0O’, '0O’, ’0O’, '0O’, ’0’, 'O’, ’O’, 'Symptom’,

‘Symptom’, 'O’; ’O’, 'O’, 'Symptom’, ’Symptom’, 'Symptom’, 'O’, ’0’, 'O’

Fine Label: OtherPER

English

Tokens: [thomas’, "heaphy’, 'the’, ’elder’, ’(’, '1775’, "=, ’1835’,)", 'watercolourist’,
‘and’, ’portrait’, 'painter’]

FineLabels: ['OtherPER’, 'OtherPER’, *O’, 'O’, 'O’, *0O’, 'O’, 'O, ’0O’, 'O’; ’O’, "0O’,
0]

Hindsi

Tokens: ['9ad', "&IFr, ', 'Tee?, '(, '1775', '=', '1835',)", 'S, "HheAlehR’, "3, 'RIr’]

FineLabels: ['OtherPER’, 'OtherPER’, *O’, 'O’, 'O’, ’0O’, 'O’, ’O’, ’0O’, 'O’, ’O’, "0O’,
aoa]

Fine Label: Disease

English

85

31.

9

Tokens: ['the’, 'pills’, "have’, "been’, 'used’, 'to’, treat’, 'ulcerative’, 'colitis’, "]
FineLabels: ['O’, ’O’,’0’, ’O’, ’0’, ’0O’, 'O’, "Disease’, 'Disease’, 'O’

Hindi

Tokens: [, MicEl, 'siedefed, ‘wlamed’, &1, 'gaNT, ‘&, ‘&', 0, 'geqqmd, &, T,
eI

FineLabels: ['O’, 'O’, 'Disease’, 'Disease’, 'O’, ’0’, ’0’, '0’, ’0’, 'O, ’0’, ’0O’, 'O’]
Fine Label: Drink

English

Tokens: ['the’, 'national’, ’alcoholic’, ’drink’, ’is’, 'beer’; "]

FineLabels: ['O’, ’O’, ’0’, ’O’, ’0O’, "Drink’; O’

Hindi

Tokens: [RTER, 'HIe', U, "7, '81']

FineLabels: ['O’, ’O’, ’O’, 'Drink’, 0’|

86

	List of Figures
	List of Tables
	Introduction
	Organization of the Report

	Review of Prior Works
	Popular datasets in the domain
	FewNERD
	MultiCoNER-v2

	State of the Art (SOTA) methods of dataset labelling for NER task
	TaLLoR
	Snorkel
	Coarse2Fine

	SOTA methods for labeling using LLM
	Can Large Language Models Design Accurate Label Functions?
	Language Models in the Loop

	Few-shot learning models in NER
	CONTaiNER

	Prompt Learning
	Prompt-Learning for Fine-Grained Entity Typing ding-etal-2022-prompt
	OpenPrompt: An Open-source Framework for Prompt-learning ding-etal-2022-openprompt

	Prompt Engineering Techniques
	Automatic Prompt Engineering
	Chain of Thought Prompting
	Tree of Thought Prompting
	Graph of Thought Prompting

	Problem Statement and Methodology
	Problem
	Raw to Fine (R2F)
	Translation with Annotation (TrA)

	Challenging nature of the Problems
	Proposed Methodology
	R2F: Raw to Fine
	TrA: Translation with annotation
	Use of Gemini for Long-Context Modeling

	Experiments & Results
	Raw to Fine (R2F)
	Experiment-0: Qualitative Testing of the LLM
	Experiment-1: Finding the acceptable number of sentences that can be labelled in one prompt
	Experiment-2: Fine-tuning LLM
	Experiment-3: Changing the Model
	Experiment-4: Better Instruction Prompts
	Experiment-5: LLM Voting Algorithm

	Translation with Annotation (TrA)
	Experiment 0: Qualitative Analysis of TrA
	Experiment 1: Vanilla prompt
	Experiment 2: Chained output prompting
	Experiment 3: Self-Consistent Prompting
	Experiment 4: Biased Few Shot Prompting
	Experiment 5: Tree of Thoughts prompting
	Final results: Few shot testing, Bangla NER

	Conclusion and Future Work
	Future Directions

	Bibliography
	Appendices
	Text corpus limitation in MultiCoNER-2
	Examples used for LLM in-context learning in R2F
	Examples used for LLM in-context learning in TrA

